


President’s Message
The Executive Committee and office bearers of International Society for Magnetic Resonance in Medicine 
(ISMRM) Indian Chapter welcome you to the 11th Annual Scientific Meeting of the ISMRM Indian Chapter: MR 
Updates on Acquisition, Recon., Analysis, AI & Beyond hosted by Indian Institute of Technology, Hyderabad from 
27th February to 1st March 2025.

There are 83 ISMRM (parent body, based out of USA) members from India, which include 44 Full members of 
ISMRM (active as of February, 2025), 36 Trainee members of ISMRM and 3 Emeritus members of ISMRM from India. 
There are 19 Full members of ISMRM of Indian Origin (from other countries) who have been attending the Chapter 
meetings.

The Indian Chapter of ISMRM has grown exponentially over the past few years, and has a current membership 
strength of 200.

With a meticulously curated scientific program, we are confident that this three-day conference and workshop will 
offer cutting-edge insights into MR innovation, engaging discussions, and valuable networking opportunities. The 
Organizing Committee has worked diligently to ensure a stimulating and enriching scientific experience for all 
attendees.

Complementing the main sessions, various workshops offer hands-on learning in diffusion-weighted imaging, 
advanced neuro post-processing, AI-driven insights, and Open Recon methods. Led by esteemed academicians and 
industry experts, these sessions promise to enhance your practical MRI skills.

Stalwarts in the fields of MRI and radiology from the US, Europe, Singapore, and prestigious institutions in India 
will participate in the conference. We extend our heartfelt gratitude to our sponsors for their generous support, 
which has played a crucial role in making this event possible and in subsidizing registration fees for students 
lacking financial support.

We look forward to your active participation, meaningful scientific discussions, and the opportunity to advance MR 
research together.

Prof. S. Senthil Kumaran
President,

All India Institute Of Medical 
Sciences, Delhi



A warm welcome to all the delegates of the 11th Annual Scientific Meeting of the Indian Chapter of the 
International Society of Magnetic Resonance in Medicine (ISMRM), hosted by our institution, the Indian 
Institute of Technology Hyderabad. 

It is a privilege to host this gathering of distinguished scientists, clinicians, academicians, industry leaders and 
students from across India and abroad, fostering collaboration in the field of magnetic resonance imaging (MRI).

At IIT Hyderabad, innovation is at the core of our mission. With a strong emphasis on R&D, industry 
partnerships, and a thriving startup ecosystem, the institute is committed to driving technological progress. Our 
dynamic faculty and talented students continuously push the boundaries of knowledge, making significant 
contributions to science and technology. 

Our Department of Biomedical Engineering is engaged in cutting-edge research in biomedical imaging 
technologies, including MRI. With MR imaging playing an increasingly important role in healthcare today, 
research in its basic technology, as well as in applied clinical aspects, including AI’s role medical imaging, has 
gained renewed importance for improving healthcare. 

As we embark on this three-day journey of insightful discussions and knowledge exchange in this conference, 
we look forward to strengthening global and local collaborations and shaping the future of MRI research. 

Wishing you all a productive and enriching conference!

Prof. B.S. Murty
Director

Indian Institute of Technology 
Hyderabad
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Patron’s Message
It is my pleasure to extend a warm welcome to all of you to the 11th Annual Scientific Meeting of the ISMRM 
Indian Chapter, being hosted at IIT Hyderabad. 

This gathering brings together leading researchers, academicians, and professionals from around the 
subcontinent and abroad to explore the latest advancements and applications of Magnetic Resonance (MR) 
across various scientific and medical domains. It provides a unique platform for knowledge exchange, fostering 
discussions that will shape the future of MR and its transformative impact on healthcare and life sciences. I 
would like to thank IIT Hyderabad for organizing this significant event, along with all the speakers and 
participants who have come together to share their expertise. 

At CCMB Hyderabad, we strongly believe in the power of interdisciplinary collaboration to drive innovation. 
MR technology continues to revolutionize biomedical research, clinical diagnostics, and neuroscience, offering 
deeper insights into complex biological systems. CCMB has always been at the forefront in the development 
and/or use of novel Magnetic Resonance methods for probing biological systems and processes and this 
conference is a great way to bring together the research fraternity of this field.

I am confident that this conference will lead to fruitful discussions, new collaborations, and innovative ideas 
that push the boundaries of MRI research.

Wishing you all a fruitful and inspiring conference!

Prof. Vinay K. Nandicoori
Director

CSIR - Center for Cellular & 
Molecular Biology



Local Organizing Team’s message

On behalf of the local organizing committee at the Indian Institute of Technology 
(IIT) Hyderabad, we are delighted to invite you to the ISMRM Indian chapter’s 
11th annual Scientific meeting, taking place from 27th February to 1st March, near 
the city of Hyderabad. 

As magnetic resonance imaging (MRI) enthusiasts, MRI forms the foundation of 
our research, playing a central role in everything we do. With a comprehensive 
scientific program focused on the theme of ‘MR Updates on Acquisition, Recon., 
Analysis, AI & Beyond’ featuring renowned speakers and workshops for training 
on various MRI aspects, we look forward to an engaging and inspiring conference. 

While you enjoy the conference, please don’t forget to explore our campus as well 
as the city of Hyderabad. IIT Hyderabad is one of India's top science and 
technology institutes, with a vibrant campus surrounded by serene landscapes. We 
are most excited to welcome you to our wonderful campus. As most of you have 
chosen to stay on the campus during the conference, we have made every possible 
effort to make your stay comfortable. 

We thank the Indian chapter of ISMRM for giving us the opportunity to host this 
event and wish you all a wonderful conference!!!

Dr. Jaladhar Neelavalli, 
Convenor

Dept. of Biomedical 
Engineering

Indian Institute of Technology 
Hyderabad

Dr. Anant Bahadur Patel, 
Co-Convenor

CSIR – Center for Cellular 
and Molecular Biology

Dr. Nagarajan Ganapathy, 
Secretary

Dept. of Biomedical Engineering
Indian Institute of Technology 

Hyderabad



Sponsors



A variational autoencoder can reduce the scanning time of arterial spin labeling for cerebral blood flow map generation
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Introduction

Arterial spin labeling (ASL) is a perfusion magnetic resonance imaging modality 

that can be used to quantify cerebral blood flow (CBF) in 100gm/ml/min units. 

ASL provides crucial information about the regional CBF alterations observed in 

brain disorders such as Alzheimer’s disease (AD) [1, 2]. However, in ASL, 

multiple pairs of control label (CL) images are acquired and averaged to generate 

a CBF map resulting in poor signal-to-noise ratio (SNR) and higher scanning 

time [3,4]. Deep learning-based models have recently been proposed for SNR 

improvement and reduction in scanning time. In this study, we used a variational 

autoencoder (VAE)-based deep learning framework for CBF map generation 

from CL image pairs acquired during the ASL sequence. We hypothesized that 

the use of VAE would enable the generation of a CBF map with a subset of 

acquired CL pairs and would achieve a similar quality to the CBF map derived 

from all CL pairs. This will, in turn, reduce the ASL scanning time for the 

subsequent scans. 

Methods

The study consisted 73 healthy controls (18 male, 55 female) acquired from the 

AD Neuroimaging Initiative (ADNI) repository (http://adni.loni.usc.edu/) 

including 3D T1 weighted, 2D Pulsed ASL (PASL), and M0 calibration images. 

The images were acquired on Siemens 3.0T MR scanner with PASL sequence 

using quantitative imaging of perfusion using a single subtraction II (Q2TIPs) 

technique [5]. The PASL acquisition parameters were: CL pairs = 52, echo time 

(TE) = 12ms, repetition time (TR) = 3400ms, inversion time TI1 = 700ms, TI2 = 

1900ms, 24 sequential slices with 4mm slice thickness, 1mm slice gap, FOV = 

256x256mm, and image matrix = 64x64. ASL image analysis was performed 

using FSL BASIL toolbox [6,7]. FSL MCFLIRT within BASIL [8] algorithm was 

applied for motion correction of raw ASL images. CL image pairwise subtraction 

generated a perfusion-weighted image, which was subsequently used for CBF 

map computation using the Buxton generic kinetic model [9]. As little temporal 

variation was observed in CBF during the resting state ASL scan [10], we 

selected the first 32 CL pairs (60% of total CL pairs) to minimize the scan time 

while representing the meaningful analysis of CBF maps. CBF maps of CL-52 

pairs and CL-32 pairs were computed, extracted as 2D slices of size 128x128. 

The A Vector Quantized VAE (VQVAE) model was trained for 200 epochs with 

input as CL-32 CBF map slices and ground truth (GT) as CL-52 CBF map slices 

using Huber loss function with delta parameter = 1.0, 0.5, and 0.7. Performance 

of the predicted images was evaluated using validation metrics of SSIM 

(Structural Similarity Index Measure), MAE (Mean Absolute Error) and MMD 

(Maximum Mean Discrepancy).

Results

The performance of the VQVAE models was evaluated for validation and 

training loss using Huber loss function for delta values 0.7, 0.5, and 1.0. There 

was no visible (Figure 1) or quantifiable (Table 1) change in using these three 

delta values. We examined the CBF value as the mean voxel intensity of the 

enhanced image and GT image.

Discussion

This study provides means to significantly reduce the ASL acquisition time 

without compromising the CBF map quality. In Huber loss, transition point 

parameter δ controls the transition from quadratic to absolute value. We used a 

sensitivity analysis for δ by checking its effect for three values viz. 1.0, 0.5, and 

0.7.  Table 1 indicated that the HC model with δ=0.7 provided better results in 

terms of SSIM (0.99), and the least MAE (0.0014) and MMD (0.064) values, 

could be used for VQVAE-based CBF map generation using fewer CL pairs. The 

improvement in the visual quality of enhanced CBF maps can help in detecting 

subtle abnormalities and improving interpretability. While the model has shown 

better image enhancement, the quantitative CBF values may not always match 

with the GT values. This discrepancy may be caused by several factors, such as 

the non-linear relationship between CBF values and image intensity and the 

VQVAE model’s preference on perceptual enhancement rather than strictly 

preserving the quantitative measurements.

Conclusion

The VQVAE model with Huber loss function has shown promising results in 

terms of SSIM, MAE and MMD to obtain the enhanced CBF maps using only 

60% of CL pairs. It will help in the reduction of ASL scanning time and help in 

interpretability of CBF maps. In future, we plan to train the model on a large 

dataset with a hybrid loss function for balanced enhancement and quantitative 

accuracy.

Dhanashri Joshi 1 Amol Gautam 2 Bhushan Borotikar 1

1.Symbiosis Centre for Medical Image Analysis, Symbiosis International University, Pune, India, 
2.Department of Radiodiagnosis, Symbiosis University Hospital and Research Centre, Pune, India.
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Model Train loss Val loss SSIM MAE MMD

HC delta 1 2.40E-0.5 2.45E-0.5 0.99 0.0015 0.068

HC delta 0.5 2.48E-0.5 2.42E-0.5 0.98 0.0024 0.093

HC delta 0.7 2.58E-0.5 2.39E-0.5 0.99 0.0014 0.064

Table 1: Train loss, Val loss, MAE, and MMD in ml/100gm/min and SSIM validation metrics.

Figure 1: The predicted CBF maps obtained from CL-32 pairs with δ = 0.7, 0.5, and 1 with 

the original CL-52 CBF map.



Introduction

Magnetic Resonance Imaging (MRI) is a critical diagnostic tool in modern medicine, 

offering detailed images of internal structures without invasive procedures. Ensuring the 

reliability and accuracy of MRI systems is paramount to maintaining diagnostic confidence. 

Standardized protocols, such as those outlined by the American College of Radiology 
(ACR), are utilized to validate MRI systems' performance. The ACR large phantom is a 

standard tool designed to evaluate critical imaging parameters. This study focuses on the 

validation of an Indigenous Magnetic Resonance Imaging (IMRI) system, a locally 

developed MRI system, to benchmark its performance against ACR standards [1]. The ACR 

phantom tests evaluate various imaging criteria, including geometric accuracy, spatial 
resolution, slice thickness and position accuracy, image intensity uniformity, percentage 

signal ghosting, and low-contrast object detectability. These criteria are crucial for ensuring 

consistent and precise imaging, which directly impacts clinical diagnosis. The IMRI 

system’s validation seeks to establish its readiness for clinical application while identifying 

potential areas for improvement.

Methods

The study utilized the ACR large phantom as the test object, following standard ACR 

guidelines for MRI system validation [2]. The phantom was scanned using the IMRI system 
under specified conditions, and key slices from T1 and T2-weighted series were analysed. 

The tests included the following:

Geometric Accuracy: Measurements were performed on reference slice 5 of the ACR T1 
series to ensure that spatial dimensions in the image matched the known physical 

dimensions of the phantom.

High-Contrast Spatial Resolution: Reference slice 1 from both T1 and T2 series was 

examined to determine the smallest resolvable structure in both up-down and left-right 
directions. The measured resolution was compared against the ACR standard of 1.0 mm.

Slice Thickness Accuracy: The ramps visible on reference slice 1 of T1 and T2 series were 

analysed to verify slice thickness accuracy.

Slice Position Accuracy: Measurements were taken on slices 1 and 11 of both T1 and T2 

series to detect deviations in slice positioning. Deviations greater than 4 mm were 

considered to adversely affect low-contrast detectability.

Percentage Signal Ghosting: Ghosting artifacts were assessed on slice 7 of the T1 series by 

measuring signal variations at defined regions.

Low-Contrast Object Detectability: Slices 8 through 11 of both T1 and T2 series were 

inspected to identify the visibility of low-contrast objects (spokes). The presence of at least 

27 spokes was required to pass this test.

Results

 The IMRI system performed satisfactorily on most tests:

Geometric Accuracy: The system passed, with measured dimensions closely matching the 
physical dimensions of the phantom shown in figure 1.

 Figure 1. Geometric Accuracy

High-Contrast Spatial Resolution: The smallest resolvable structure was 0.9 mm, meeting 

the ACR standard shown in figure 2.

Figure 2. High-Contrast Spatial Resolution

Slice Thickness & Position Accuracy: The ramps were clearly visible, confirming accurate 

slice thickness shown in figure 3a. No measurable differences exceeding 4 mm were 
observed, indicating correct slice positioning shown in figure 3b.

 Figure 3a. Slice Thickness                   Figure 3b Position Accuracy

Signal Ghosting and Low-Contrast Object Detectability: This test was passed in T2-

weighted images, with 27 spokes visible shown in figure 4a. The calculated ghosting levels 

fell within acceptable ranges shown in figure 4b . 

 Figure 4a. LCD Detection                   Figure 4b Signal Ghosting

Discussion
The results highlight the IMRI system’s capability to meet most ACR standards, an 

encouraging outcome for indigenous MRI technology development. Regular validation 

using the ACR phantom is recommended to monitor performance over time and ensure 

compliance with diagnostic standards.

Conclusion

The IMRI system demonstrated satisfactory performance across key imaging parameters 

such as geometric accuracy, high-contrast spatial resolution, slice thickness and position 

accuracy, and percentage signal ghosting. These results affirm the system’s capability to 
produce reliable and precise diagnostic images. Overall, the IMRI system shows great 

promise for clinical application, provided ongoing refinements are implemented to address 

the identified limitations.
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Accuracy of Indigenous AI tool in detection of Ischemic Neurological Stroke
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Introduction

Neurological stroke is an acute event 

associated with significant morbidity if 

treated beyond the golden period. Ischemic 

strokes are the commonest and often 

present in emergency accounting for delay 

in reporting by expert hands. Hence, the 

technological advances especially artificial 

intelligence tools are being developed to 

suit the needs of the population. Such a 

tool has been developed indigenously, and 

we are presenting our initial experience 

with the same.

Methods

Twenty-five patients with suspected stroke 

were reported by a radiologist and by using 

AI tool with special reference to the 

presence or absence of infarct, location, 

arterial territory, diffusion-T2FLAIR 

mismatch, hemorrhagic transformation 

present or absence, and any midline shift. 

Accuracy of AI tool was compared against 

the findings made by an expert Radiologist.

Results

The AI was 100% accurate in the detection 

of infarct with more than 95% accuracy in 

detecting its location. However, moderately 

high accuracy was noted in detection of the 

hemorrhagic transformation and midline 

shift. AI performed poorly in territorial 

distribution, DWI/T2FLAIR mismatch 

recognition and detection of midline shift.

Conclusion

Though the initial results are encouraging 

as AI could detect all the infarcts 

suggesting its high utility in emergency 

setting. However, it needs further 

improvement in detection of other 

parameters which could also help in better 

management.
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Introduction

The FRACTURE sequence in MRI is a gradient-echo-based method with 

specialized post-processing steps to enhance bone contrast in addition to 

superior soft-tissue contrast [1-3]. However, the post-processing steps 

lead to a bright background that complicates downstream processing, 

necessitating manual adjustments for background inversion. A re-inverted 

background would enable (a) generation of medical images comparable 

to those from CT or X-ray; (b) aid for surgery planning in 

musculoskeletal (MSK) pathologies wherein FRACTURE images, 

together with MR angiography technique3 REACT and NerveView, are 

used to create 3D models of the skeleton, blood vessels and nerves; (c) 

selective removal of background noise leading to cleaner images. 

However, current approaches like intensity thresholding is not 

generalizable and require manual effort, especially in FRACTURE 

images wherein the contrast of bony structures may be like that of the 

image background. Machine learning (ML)-based models focus on 

isolating specific ROIs (e.g., tissues, tumors) based on morphology [4-7]. 

This narrow focus complicates accurate identification of the entire 

anatomy and distinguishing it from background noise. In this work, we 

implemented an artificial intelligence (AI)-enabled model, nnUNet, that 

can identify and selectively remove/invert the background from the 

FRACTURE images with a minimal training dataset.

Methods

FRACTURE images acquired from scanning the wrist were used as the 

dataset for developing the model. To obtain the corresponding masks for 

each image slice, a GUI was created wherein the following operations 

could be done on the image: thresholding, dilation, erosion. Following 

this, the masks were obtained such that each pixel value was identified as 

the foreground or the background by the labels ‘1’ and ‘0’ respectively. 

The dataset was then augmented with operations including but not limited 

to image flip, coarse dropout, rotation, and distortion to populate the 

dataset. The images were converted into the nnUNet-compatible NIfTI 

format and normalized. Following this, the data was split into train and 

test sets. For transfer learning the pre-trained nnUNet model was obtained 

and retrained with the 3D full resolution nnUNet architecture. Three-fold 

cross-validation was employed. The model was trained by iterating over 

the training data and periodically validating it using the validation set to 

monitor performance metrices. Hyperparameters were adjusted based on 

the validation results to improve performance. Finally, the model was 

tested on a surrogate dataset.

Results

The trained model was further tested on two augmented datasets. The test 

accuracy on the augmented data was found to be 99.6%, with 0.994 

precision, 0.995 recall and 0.995 F1 score. Fig. 1 (a) shows the 

FRACTURE data used for testing the model (b) shows the inversion 

achieved after applying the predicted mask (c) depicts the corresponding 

confusion matrix for evaluating the model performance.

Discussion

We showcased the effectiveness of our model on the wrist anatomy, with 

the key innovation being the full automation of background removal, 

eliminating the need for any manual intervention. The nnUNet 

automatically adjusts hyperparameters without requiring explicit 

monitoring, while also handling training parameters, such as the number 

of epochs for training. The time required for mask prediction is in the 

order of just a few seconds, making it highly suitable for real-time 

deployment. However, this approach needs to be extended to other 

anatomies and image resolutions beyond our current study.

Conclusion

The AI-enabled model we developed automates the background inversion 

process for FRACTURE images. By enabling rapid and efficient 

background removal, our model can significantly enhance medical 

imaging workflows such as surgical planning and 3D modeling in 

musculoskeletal pathologies

References

1.Johnson B, Alizai H, Dempsey M. Fas t field echo resembling a CT us ing restricted echo-sp acing (FRACTURE): 

a novel MRI techniq ue with superior bon e contrast. Skeletal Rad iology. 2021;50(8):1705-1713. 

doi:10.1007/s00256-020-03659-7

2. Gascho D, Zoelch N, Tappero C, et al. FRACTURE MRI: Optimized 3D multi-ech o in-phase sequence for bone 

damage assessment in craniocerebral gunshot in juries. Diagnostic and Interventional Imaging. 2020;101(9):611-

615. doi:10.1016/j.di ii.2020.02.010

3. Ryuna Kurosawa , Hajime Yoko ta , Takayuki Sad a , et al. FRACTURE-Angiography: simultaneous acquisi tion 
of bon e imaging and angiography. International Society of Magnetic Resonance in Medicine. 202 4;

4. Ma J, He Y, Li F, Han L, You C, Wang B. Segment anyth ing in medical images. Nature Communications. 

2024;15(1). doi:10.1038/s41467-024-44824-z

5. Ge Y, Zhang Q, Sun Y, Shen Y, Wang X. Grayscale medical image segmen tation method based on 2D&3D 

object detection with deep learning. BMC Medical Imaging. 2022;22(1):1-14. doi:10.1186/s128 80-022-00760-2

6. Thy lashri S, Yadav UM, Danush Chowdary T. Image segmen tation us ing K- means clus tering method for brain 

tumour detection. International Journal of Eng ineering and Technology(UAE). 2018;7(2.19 Special issue  19):97-

100. doi:10.14419/i jet.v7i2.19.15058

7. Zhao Y, Huang Z, Che H, et al. Segmentation of Brain Tissues from MRI Images Using Multi task Fuzzy 

Clus tering Algorithm. Journal of Healthcare Eng ineering. 2023;2023. doi:10.1155/2023/4387134

AI-Driven Background Inversion in MR-based Bone Imaging

Fig. 1 (a) A 2D slice of a sample FRACTURE image with a bright background (b) The 

inversion achieved after applying the mask predicted by the trained nnUNet model 

around the original FRACTURE image (c) The corresponding confusion matrix depicting 

model performances.



Analysis of Tumor Heterogeneity Using DCE-MRI Kinetic Parameters Extracted via Bi-exponential Curve Fitting with TICs
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Introduction

To investigate the relationship between temporal intensity parameters 

derived from Breast Dynamic Contrast-Enhanced Magnetic Resonance 

Imaging (DCE-MRI) and tumor heterogeneity using a segmented 

volume. To correlate parameters such as Tau1, Tau2, the maximum 

intensity (I_max), and time to peak (TTP) to assess the heterogeneity of 

the segmented Region of Interest (ROI).

Methods

A total of 10 patients (QIN breast DCE MRI) were included in this study 

from TCIA (The Cancer Imaging Archive)[1]. The procedure follows as 

1. Select a 4-D image. 2. ROI extraction using energy-based volumetric 

segmentation by minimax optimization technique [2]. 3. Extraction of 

Temporal Intensity Curves (TIC) from each voxel. 4. Bi-exponential 

model fit with TIC and extract parameters like Tau1, Tau2, the maximum 

intensity (I_max), and time to peak (TTP). 5. The relationships between 

the temporal parameters (Tau1, Tau2, I_max, and TTP) and tumor 

heterogeneity by correlation analysis.

Results and Discussion 

From Table 1: Low values of Tau1: Indicate that the tumor region has 

rapid contrast uptake. High values of Tau2: Indicate slower washout, 

which could be due to slower perfusion. High I_max values: Suggest 

high contrast uptake, usually associated with highly vascularized Low 

I_max values: Indicate lower contrast enhancement, which could 

correspond to necrotic. Shorter TTP: Reflects faster arrival and uptake of 

the contrast agent. Longer TTP: Indicates slower contrast agent uptake. 

As reflected in the kinetic parameters, tumor heterogeneity suggests 

differences in vascular and metabolic activity within the tumor regions. 

The results highlight the potential of DCE-MRI parameters in assessing 

tumor aggressiveness and guiding treatment decisions, although further 

validation in larger cohorts is needed. Further investigation is to explore 

how DCE-MRI kinetic parameters can be integrated into models for 

tumor grading and predicting pathological response to treatment.
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Figure 1: Flow diagram for tumor heterogeneity analysis

Patient 

ID

No.of 

voxels 

in ROI

Average 

Tau1_Fast 

Average 

Tau2_slow

Average

 Imax

Average 

TTP

BC-01 12683 0.16591 0.55644 78.667 16.6222

BC-05 2143 7 132.0893 22.423 16.2106

BC-06 738 16.9348 130.5246 59.0353 18.2877

BC-08 47470 0.0317 0.42367 17.4095 16.3519

BC-10 3682 13.3249 108.2205 38.2861 17.9766

BC-12 6130 116.9775 165.5431 138.1806 20.432

BC-13 1058 6.9 105.1303 19.228 15.3122

BC-14 3997 18.4517 109.8145 50.2855 19.5033

BC-15 3410 7.6254 14.0674 126.088 15.5811

BC-16 5147 28.358 108.7356 85.6949 15.7954

Table 1: Average TIC parameters of all patients in the dataset 
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Introduction

Hypertrophic cardiomyopathy (HCM), the most common monogenic cardiac 

disease, affects approximately 1 in 500 individuals [1–4]. MRI plays a crucial 

role in assessing mitral regurgitation (MR) and myocardial tissue characterization 

in HCM [5]. LVOT obstruction occurs in ~70% of HCM cases due to septal 

hypertrophy and pressure gradients, displacing the anterior mitral leaflet (AML) 

and causing significant SAM-dependent MR [6].

Cardiac MRI surpasses echocardiography in MR quantification and mitral valve 

evaluation, aiding in surgical planning and clinical management [7, 8]. 2D cine 

imaging with phase- contrast velocity mapping, quantify MR severity but are 

time-intensive [9]. Deep learning (DL) accelerates MRI segmentation, reducing 

manual effort while maintaining accuracy, though challenges persist in cases with 

asymmetric hypertrophy and complex anatomy [10, 11]. This study examines the 

equivalence of DL-based segmentation software with manual methods for 

assessing cardiac parameters in HCM.

Methods

We analyzed 25 HCM patients (mean age: 51±10 years) undergoing CMR for 

diagnosis or severity evaluation. CMR was performed using a 3-T scanner (Vida, 

Siemens) with cine images acquired via a TrueFISP sequence (TR: 2.7 ms, TE: 

1.5 ms, flip angle: 60°, temporal resolution: 50 ms). Standard long-axis views and 

short-axis slices (thickness: 8 mm, gap: 2 mm) were obtained. The Institutional 

Review Board approved the protocol, and informed consent was obtained.

Cine-CMR images were analyzed using syngo.Via for manual delineation of 

LV/RV endocardial boundaries, including papillary muscles and trabeculations. 

LVEF, EDV, and ESV were calculated using Simpson’s method. DL-based EF, 

SV, and EDV were calculated using SuiteHeart software. MR volume was 

derived using the formula MR = LVSV – aortic forward flow. Manual and 

automated results were compared using paired t-tests, ICC, and Bland-Altman 

analysis.

Results

The mean EF measured by DL-based and manual methods was 62.4±8.52% and 

61.3±8.54%, respectively, with no significant difference (p = 0.077). Agreement 

was excellent (ICC = 0.89–0.97, p < 0.001). Bland-Altman analysis showed good 

agreement without systematic bias. DL-based software reduced analysis time to 

7±3 minutes compared to 30±7 minutes for manual segmentation. MRI provided 

similar MR grades to echocardiography, differing in 2/19 cases with mild MR.

Discussion

DL-based software demonstrated high agreement with manual segmentation for 

assessing cardiac parameters in HCM. While echocardiography is widely used, 

CMR remains the reference standard for quantifying cardiac metrics. DL 

algorithms streamline workflows, reduce analysis time, and improve accessibility. 

Challenges include addressing asymmetric hypertrophy and LVOT gradient 

measurements. Future work should optimize DL algorithms for HCM-specific 

challenges and validate findings in multicenter cohorts to enhance clinical 

application.

Conclusion

DL-based automated segmentation provides accurate, reliable quantification of 

cardiac parameters in HCM, reducing analysis time significantly. Current 

algorithms show promise but require further refinement for complex HCM 

morphology. Future studies should validate these findings in larger cohorts and 

explore clinical integration to improve patient outcomes.
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Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition 

characterized by challenges in social interaction, communication, and 

behavior [1]. According to the CDC (2023), the prevalence of ASD 

has risen to 1 in 36 children. Traditional diagnostic methods, such as 

Autism Diagnostic Observation Schedule and Autism Diagnostic 

Interview-Revised, are time-consuming and limited in accuracy. 

Diffusion Tensor Imaging (DTI), a non-invasive MRI technique, 

offers promise in diagnosing ASD-related microstructural brain 

changes and tracking treatment response. DTI-derived metrics, such 

as Fractional Anisotropy (FA), Axial Diffusivity (AD), Mean 

Diffusivity (MD), and Radial Diffusivity (RD) have been widely used 

to characterize microstructural variations [2]. Further, studies have 

used graph theory to analyze the network of brain regions (nodes) and 

their structural or functional connections (edges) [3]. However, the 

graph theory was not explored to study the brain organization and 

connectivity patterns of ASD using the DTI images. In this study, we 

used graph metrics and machine learning algorithm to build a 

diagnostic classification model for ASD.

Methods

Figure 1 (a) shows the process pipeline of the study. DTI data from 

the publicly accessible ABIDE II database, including images from 154 

individuals with ASD and 129 typically developing (TD) participants, 

were pre-processed using a standard pipeline [4]. DTI measures such 

as FA, AD, MD, and RD were computed for 50 regions of interest 

based on the JHU atlas. A structural correlation graph was constructed 

using a Pearson correlation-based feature matrix [5]. Graph-

theoretical metrics were extracted to characterize the network 

topology, including Betweenness Centrality, Closeness Centrality, 

Clustering Coefficient, Degree Centrality, Participation Coefficient, 

and Strength. This resulted in a total of 300 graph metric features per 

participant [3]. Recursive feature elimination with cross-validation 

was used for feature selection, and the selected features were 

employed to train the Logistic Regression (LR) machine learning 

classifier to distinguish ASD from TD participants. Model 

performance was evaluated using accuracy, sensitivity, specificity, 

precision, and F1-score.

Results

The performance of the LR classification model is assessed using 

different numbers of top features. Figure 1 (b) shows that the accuracy 

initially improves with an increasing number of features, reaching a 

peak of 81.61% at 75 features. Beyond this point, the accuracy 

fluctuates, indicating the potential diminishing marginal utility of 

additional features, suggesting an optimal feature subset of around 75 

for this dataset. The top three features that performed well in 

classifying ASD and TD participants were Strength of the Cingulum 

(Cingulate Gyrus) L, Closeness Centrality of the Anterior Corona 

Radiata L, and Betweenness Centrality of the Genu of the Corpus 

Callosum.

Discussion

This study highlights the potential of DTI-based graph-theoretical 

metrics combined with machine learning classifier to differentiate 

ASD from TD participants. LR with 75 features shows the highest 

accuracy of 81.61%, with key brain network features, such as the 

Strength of the Cingulum and Closeness Centrality of the Anterior 

Corona Radiata, identified as critical biomarkers for ASD 

classification.

Conclusion

DTI and graph theory offer valuable insights into the neurobiological 

mechanisms of ASD, with machine learning model enhancing 

diagnostic accuracy. The extracted features show potential for early 

detection. Future research can incorporate additional metrics and 

machine learning classifiers to generalize the diagnostic process 

further.
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Introduction

The most prevalent primary tumors of the central nervous system are 

meningiomas, which account for 37% [1] of all brain tumors in adults. 

It is an extra-axial brain tumor that arises from the meninges, which is 

a protective layer that protects the brain and spinal cord. The 

meninges consist of three layers: dura mater, arachnoid mater, and pia 

mater. According to WHO 2021, meningiomas are classified as grades 

1,2 and 3. Over 80% of cases are grade I, which are slow-growing and 

benign tumors that can be effectively treated by surgical resection and 

radiotherapy. Magnetic resonance imaging is a gold standard for 

diagnosing and treatment planning of meningiomas.[2]

One of the most common radiologic indicators of meningioma is the 

"dural tail sign." The dural tail sign occurs due to the thickening and 

enhancement of the dura, which can be seen from the contrast-

enhanced T1 weighted image(T1CE). The reaction of a meningioma 

tumor depends on the thickening and enhancement of the dura, so it is 

essential to detect the dura tail sign.[3] The dura tail sign is currently 

assessed qualitatively, and it is prone to interrater variability. This 

study aims to evaluate the potential of deep learning for automatically 

detecting dura tail on MRI images.

Methods

This study utilizes T1-weighted contrast-enhanced (T1CE) MRI scans 

of 62 patients with meningioma. Data was collected from a local 

hospital and publicly available online resources. The ground truth 

masks were annotated manually using open-source software 3D slicer 

and then verified by a radiologist. The images were pre-processed to 

ensure uniformity across all scans by resizing the volumetric data to a 

fixed dimension of 256, 256, and 128. Additionally, intensity 

normalization was performed, scaling pixel values to a range of 0-255 

to enhance contrast consistency and minimize variations caused by 

different imaging protocols.

The first stage of the pipeline involves tumor segmentation, where a 

2D deep learning-based segmentation network (U-Net) was trained to 

identify and delineate the tumor region in an MRI slice. The 

performance of the segmentation network was evaluated using the 

Dice Similarity Coefficient (DSC), a widely used metric for assessing 

the overlap between predicted segmentation masks and ground truth 

annotations. Following segmentation, the second stage focuses on 

dura tail classification. The predicted tumor masks were multiplied to 

get the whole tumor volume. A 3D classification model (ResNet-18) 

was then trained to determine the presence or absence of the dura tail 

in these reconstructed volumes. 42 datasets are used for training, and 

20 are used for testing. The classification model’s performance was 

assessed using test accuracy to measure its effectiveness.

Results

The segmentation model achieved a Dice Similarity Coefficient 

(DSC) of 0.82, ensuring reasonably accurate tumor boundary 

delineation. The dura tail classification model demonstrated 85% test 

accuracy; out of 20 volumes, it predicted 17 correctly, confirming its 

effectiveness in detecting the dura tail sign.

Discussion

This study presents a deep learning framework that integrates tumor 

segmentation with classification for automated dura tail detection. The 

segmentation model achieved a high DSC, ensuring reasonably 

accurate tumor delineation, while the classification model 

demonstrated a sufficiently high accuracy. This approach minimizes 

false positives and improves consistency in clinical applications. A 

small sample size is one of the limitations of this study; results should 

be validated using a large sample size. Challenges remain, including 

MRI variability across institutions and ambiguous cases with faint 

dura tails. Future work should focus on multi-center datasets, multi-

sequence MRI integration, and extending to 3D segmentation for 

improved accuracy.

Conclusion

This study presents a deep learning-based framework for automated 

dura tail detection by integrating tumor segmentation with 

classification. The proposed approach achieved reasonably accurate 

results in automatically detecting dura tail signs on MRI images and 

should be validated on a large, multicentric dataset.
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Introduction

Scanning obese patients in the non-wide-bore MRI scanner pose 
challenge in acquiring images with surface coil. Therefore, 

volume  body coil may be preferred for data acquisition, however, 

in the absence of surface coil, accelerating an MR sequence 
becomes challenging to lower the scan time. Hadamard encoding 

based Simultaneous Multi Slices (SMS) has been proposed as an 
effective  technique to achieve considerable reduction in scan time 

[1]. This technique is different from Multiband SMS where coil 

sensitivities  of multi-channel coils are used for the acceleration [2, 
3]. Hadamard based SMS offer inherent additional SNR and lower 

refocusing  pulse SAR and peak B1 requirements it extends slice 
thickness of the existing refocusing pulse with lower gradient 
strength. 

Methods

Hadamard SMS uses different RF excitations over various 
averages to keep scan time similar and achieve multiple 

slice  excitation/separation. Acceleration of factor 2 using SMS 

(called SMS Factor) is implemented by modulating RF pulse of 
odd numbered averages by cosine and even numbered averages by 

sine pulse (with frequency of modulation corresponding to the slice 
thickness  and gap). This result in odd averages as sum and even 

average as difference of two slices, respectively. There was no 

need to change  the refocusing pulses or decrease flip angles to 
reduce SAR in this method. The existing hardware RF peak power 

limits was adhered  with no clipping. Additional Fat Saturation, 
spatial saturation, flow compensation modules are all compatible 

with the encoding.

Existing slice ordering schemes were adjusted to reduce slice cross 

talk effects. Two SMS acquired slices are resolved in 

image  reconstruction by adding and subtracting the odd and even 
numbered average. It is shown here that the technique blends well 
with  the new DL solutions like ARDL [4].

All acquisitions were performed on a GE HealthCare 1.5T Prime 

scanner using volume coils. All human subjects were scanned as 
per  study protocol approved by an ethics committee. 

Results

Fig.1 shows axial B/L hip joint T1 weighted DL processed 

images. Non-SMS image Fig 1(a) is acquired with 2 passes and 
showed similar image quality as that SMS image Fig 1(b) acquired 

with  single pass and half the scan time (1:28min compared to 

3:20min). The TR of 500ms is kept same for both acquisitions. 
Volunteer was scanned at commercial 1.5T MRI scanner. 

Discussion and Conclusion

Hadamard based SMS has been proven to be quite  effective in T1 
weighted images acquired using  single channel volume coil where 

parallel imaging based acceleration is not feasible. Since, 

SMS  allow us to complete data acquisition in single  pass, the scan 
time as well as patient motion  artifacts get reduced. Deep learning-

based reconstruction can help further improvement in  image 
quality in terms of SNR with SMS acquisitions. This version of 

SMS can also be made compatible with multi-channel 

FSE  acquisition with parallel imaging acceleration that works in 
tandem with in-plane ARC, Asset or Compressed sensing 

techniques. The  technique is scalable to any SMS integer factor 
[3].
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acceleration (1 min  28 sec)
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Introduction

Changes in brain health with normal aging involve a cascade of brain structure, 

vascular, and microstructural changes over the period that may have similar or 

distinct  kinetics, order, and magnitude than alterations associated with cognitive 

impairment. With aging, the brain undergoes structural modifications, including 

atrophy or  shrinkage. Since the caudate nucleus is a part of the brain's circuitry 

involved in executive functions, memory, and other cognitive abilities, 

alternations in the size, shape, or distance between the caudate nuclei may 

potentially impact cognitive behaviors. Simultaneous changes in frontal horn 

distance are indicative of neurological diseases.  Changes in caudate and frontal 

horn distance may get accelerated in the presence of White Matter 

Hyperintensity, leading to disrupted communication between brain  regions, 

creating a potential pathway for the transition from normal aging to Mild 

Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Here, we have 

investigated the impact of cerebral small vessel disease- specifically, white 

matter hyperintensity (WMH) load on Caudate and Frontal Horn distance with 

aging, using brain MRI  segmentation and WMH lesion quantification.

Methods

Brain segmentation was performed on 3D MPRAGE and T2-FLAIR images to 

determine neuroanatomic-volume and White matter hyperintensity (WMH) load 

in cognitively normal (CN) subjects (N=595) from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) cohort. Subjects were stratified in 3 age groups: 

50-64 years (early), 65-79 years (intermediate), and >80 years (late). Brain region 

volumes obtained from segmentations were normalized to total intracranial 

volume (ICV) for each  age group using the following equation:

Vnorm denotes normalized volume for each age group; Vestimated is the volume 

obtained from segmentation, and Vavg-ICV represents mean ICV. Subjects were 

further classified into five groups based on WMH load: 0–1 ml, 1–3 ml, 3–5 ml, 

5–10 ml, and >10 ml, to explore the impact of WMH on inter-table width (IT), 

caudate distance (CC), and frontal horn distance (FH), as well as the CC/IT, 

FH/IT, and FH/CC ratios. Additionally, a mediation model analysis was 

conducted to examine both the direct and indirect effects of WMH. 

Results

The CC, FH, CC/IT, and FH/IT ratios increase with age in CN subjects, whereas 

the FH/CC ratio declines, but IT remains constant (Fig 1B-G). Furthermore, the 

CN  subject showed the enlargement of the lateral ventricle (β=1.06 ml/year, 

p<0.001) with age but caudate volume (β= 0.01 ml/year, p=0.20) remained 

constant. However,  when WMH load exceeded 3ml, there was a significant 

increase in CC, CC/IT, and FH/IT ratios and a decrease in FH/CC ratio, with the 

lateral ventricles mediating  alternations in CC(β=0.011 ml/year, p<0.01), 

FH(β=0.044 ml/year, p<0.01), CC/IT(β=0.001 ml/year, p<0.01), FH/IT(β=0.001 

ml/year, p<0.01), and FH/CC(β=-0.009  ml/year, p<0.01) ratios.

Discussion

This study explores the relationship between cerebral small vessel disease, brain 

aging, and white matter hyperintensity (WMH) burden, focusing on the caudate 

nucleus  (CC) and frontal horn (FH) distance. It reveals that age-related WMH 

growth and ventricular enlargement are progressive, with anatomical alterations 

observed in  cognitively normal (CN) individuals. The caudate distance and 

frontal horn show significant age-related alterations, indicating 

neurodegeneration inadvertently leads to  ventricular enlargement. However, the 

caudate volume remains largely constant. WMH load exceeding 3 ml leads to 

significant alterations in CC, FH, CC/IT, FH/IT, and  FH/CC ratios. This 

suggests that white matter injury may exacerbate age-related structural atrophy. 

The study highlights the critical role of periventricular white matter  integrity in 

determining the extent of structural changes in older individuals. The findings 

emphasize the need for further investigation into the underlying 

mechanisms  driving these changes, as well as longitudinal studies incorporating 

multimodal imaging techniques and cognitive assessments.

Conclusion

Accumulation of White matter hyperintensity load of more than 3 ml leads to 

significant changes in Caudate and Frontal horn distance mediated through the 

enlargement  in lateral ventricles. Future research should investigate potential 

structural indicators—CC/IT, FH/IT, and FH/CC—as predictors of cognitive 

decline and the onset of  mild cognitive impairment (MCI) or Alzheimer’s 

disease (AD).
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Aging Associated White Matter Hyperintensity Increases Caudate and Frontal Horn Distance via Lateral Ventricle Enlargement

Figure  1: (A) Representative T1-weighted axial image of  a cognitively normal (CN) bra in, 

illustrating the measurements of frontal horn (FH) distance, caudate (CC) distance, and inner-table 

(IT) width. (C–G) Linear regression analysis of  IT, CC, FH, CC/IT, and FH/IT with age. The analysis 

was conducted with the age  intercept for CN subjects set at 50 years. Sta tistical significance for the 

slope and intercept was set at p<0.05 .

Vnorm = (Vestimated /VICV) x Vavg-ICV 

Figure 2: Violin plots illustrate the median (solid line) for CC (A), FH (B) , CC/IT (C), FH/IT 

(D), and FH/CC (E) across different White Matter Hyperintensity (WMH) loads. A WMH load 

exceeding 3 ml is associa ted with signif icant changes in neuroanatomic measurements. 

Statistical dif ferences were analyzed with respect to age. Significance was assessed using 

Mann-Whitney U tests followed by Bonferroni correction.
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Introduction
The head and neck constitute a complex 
anatomical region with some structures sub-
millimeter in size. The utilization of a 
traditional 24-array HN coil presents 
constraints in obtaining high Signal-to-Noise 
Ratio (SNR) images, necessitating prolonged 
scan times for achieving higher resolution 
imaging, thereby increasing the likelihood of 
motion artifacts and patient discomfort. 3D 
ASL imaging was attempted but yielded 
insufficient perfusion data due to noisy 
images.

Consequently, the concept of utilizing a 
surface flex coil, typically employed for body 
imaging, for the purposes of head and neck 
imaging was conceived and investigated.

Methods
An indigenous apparatus was crafted utilizing 
wood and plastic with a design intended to 
diminish the distance between the surface coil 
and the patient's face, preserve adequate 
ventilation, and attain immobilization. The 
apparatus was tailored to suspend an 8-ch 
rectangular phased array small flex coil in an 
arch configuration anterior to the face, aiming 
to maximise receiver signal amplitude by 

addressing filling factor (ɳ) and geometry 
factor (g). Imaging experiments so far carried 
out on 6 healthy volunteers and 3 patients.

Results
The device helped to obtain thin-slice, high 
in-plane resolution imaging of the orbits, 
para-nasal sinuses, oral cavity, and salivary 
glands within acceptable scan times. Signal-
demanding sequences, such as 3D ASL of the 
tongue, were successfully acquired 
experimentally.

Discussion 

The optimal utilization of surface array coils 
for high-resolution imaging of the anterior 

head and neck region, without direct face 
contact, represents a novel approach. Initial 
results show promising outcomes in terms of 
patient comfort, immobilization, and high-
resolution imaging capabilities that surpass 
those achieved with the standard 24-channel 
head and neck coil in comparable scan times.

Conclusion

This zero-investment coil suspension 
apparatus enables better images for anatomy 
and also non-contrast perfusion-weighted 
imaging of head and neck cancers within 
reasonable scan times, potentially facilitating 
comparative analysis of pre- and post-
radiation tumor micro-circulation in head and 
neck malignancies, particularly oral cancers.

An Artisan Approach to Advanced Head and Neck Imaging



Introduction

Glioblastoma (GBM) is the most aggressive primary brain tumor, with a median 

survival of 12–15 months [1]. Invasive molecular characterization is often 

impractical, making non-invasive imaging, particularly MRI essential for 

diagnosis and treatment planning [2]. MRI-based tumor segmentation provides 

critical insights into tumor volume and radiomic features, while understanding 

location-specific genetic alterations can aid in targeted therapy . This study 

focuses on two key aspects, identifying the most accurate and robust brain tumor 

segmentation method and integrating radiomics with genomics to discover non-

invasive biomarkers for improved prognosis and treatment strategies.

Methods

This study benchmarked four CNN-based segmentation models CaPTk, 2DVNet, 

EnsembleUNets, and ResNet50 using 1,251 GBM subjects from the BraTS 2021 

dataset and validated on 611 subjects from the independent UPENN-GBM 

dataset [3]. Two primary evaluation strategies were employed: direct comparison 

of segmented tumor regions and radiomic feature analysis using the pyRadiomics 

library [4]. Model performance was assessed using metrics including Dice 

Similarity Coefficient (DSC), Hausdorff Distance (HD), Concordance 

Correlation Coefficient (CCC), Total Deviation Index (TDI), and Root Mean 

Squared Error (RMSE). The best-performing model was applied to the TCGA-

GBM dataset for tumor segmentation. Tumor location-specific survival outcomes 

were assessed, while genomic and differential expression analyses identified 

molecular drivers of poor prognosis using R software . Radiomic analysis 

investigated critical features contributing to survival disparities.

Results

EnsembleUNets outperformed other methods, achieving a DSC of 0.93 and HD 

of 18 on the BraTS2021 dataset, with superior radiomic precision confirmed by a 

CCC of 0.79, TDI of 1.14, and RMSE of 0.53. Validation on the UPENN-GBM 

dataset further supported these findings, with a DSC of 0.85 and HD of 17.5. 

Tumor location analysis using the in-house developed tool “tumorVQ” on the 

TCGA-GBM dataset revealed significantly poorer survival for parietal lobe 

tumors compared to frontal lobe tumors. Genomic profiling of parietal lobe 

tumors identified PTEN loss-of-function mutations (P < 0.05), FGFR3-TACC3 

and EGFR-SEPT14 fusions, and LINC00290 deletions. Differential expression 

analysis (Padj < 0.05) revealed upregulation of PITX2, HOXB13, and DTHD1, 

associated with tumor progression, while ALOX15 downregulation was linked to 

increased relapse risk. Radiomic features, including lower 

LLL_GLDM_DependanceEntropy (HR = 2.47, P = 0.014) and higher 

HLL_firstorder_Mean (HR = 2.90, P = 0.025), were strongly associated with 

poor survival. 

Discussion

This study underscores the importance of accurate tumor segmentation and 

location-specific analyses in understanding glioblastoma (GBM) heterogeneity 

and prognosis. EnsembleUNets demonstrated exceptional segmentation 

performance across BraTS2021 and UPENN-GBM datasets, attributed to its 

integration of three methods (3D U-Net, 3D MI-U-Net, and 3D+2D MI-U-Net). 

Its sequential training strategy combines 3D and 2D representations, leveraging 

multi-modal MR images, BP maps, and probability maps for enhanced accuracy 

and robustness [5]. Tumor location, radiomic, and genomic analyses revealed the 

aggressive nature of parietal lobe tumors, driven by PTEN loss-of-function 

mutations, including missense and frameshift mutations in the PTPc and C2 

domains, known to confer resistance to chemotherapeutic drugs. Additional 

drivers included FGFR3- TACC3 and EGFR-SEPT14 fusions and LINC00290 

deletions. Radiomic features, such as lower LLL_GLDM_DependanceEntropy 

and higher HLL_firstorder_Mean, emerged as prognostic imaging markers, while 

differential expression of PITX2, HOXB13, and DTHD1, and downregulation of 

ALOX15, highlighted role in activating/altering critical pathways promoting 

tumor aggressiveness [6]. These findings emphasize integrating radiomic and 

genomic data to refine prognostic models and enable personalized therapies for 

GBM.

Conclusion

EnsembleUNets proved to be the most reliable segmentation model, enabling 

precise tumor localization and radiomic analysis. Parietal lobe GBM tumors 

exhibited distinct genomic and radiomic profiles associated with aggressive 

phenotypes and poor survival outcomes. Key genetic alterations, including PTEN 

mutations, fusion genes, and LINC00290 deletions, along with critical radiomic 

features, offer valuable prognostic insights. The integration of imaging 

biomarkers with genomic data represents a powerful approach for refining GBM 

prognosis and developing location-specific, personalized therapies. Expanding 

radiogenomics datasets and further validating these findings will enhance our 

understanding of GBM heterogeneity and improve clinical outcomes.
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Introduction

Volume and surface-based atrophy play a significant role in the 

assessment of progression of Parkinson's disease (PD). Region of 

interest (ROI)-based structural measures of brain MRI data in early-

onset (EOPD) and late-onset (LOPD) provide precise morphological 

differences between groups.

Methods

A total of 27 EOPD, 32 young healthy controls (YHC), 28 LOPD, and 

27 older healthy controls (OHC) were enrolled for MRI. Regional 

gray matter volume (GMV), white matter volume (WMV) and surface 

measures (fractal dimension (FD) and cortical thickness (CT) were 

assessed using ROI based analysis. Relationship between clinical 

variables and morphological features were also computed.

Results

EOPD vs YHC exhibited a reduction in GMV and cortical complexity 

in frontal, parietal and temporal lobes. In EOPD, a negative 

correlation of GMV with UPDRS II (in left medial frontal cortex, 

precuneus and right supplementary motor cortex) were observed 

(Fig.1 & Table1). These areas showed a significant area under the 

curve in differentiating EOPD and YHC based on GM volume (Fig.2). 

FD with UPDRS III in right pericalcarine; GI and UPDRS II in left 

transverse temporal and pars opercularis; CT with UPDRS III in right 

superior frontal regions (Table2). Significant results were not seen in 

LOPD compared to OHC group.

Discussion

Association of GMV alterations in the left medial frontal cortex, 

precuneus and the right supplementary motor cortex regions with the 

UPDRS Part II are closely linked to the severity of motor impairments 

and impact on daily living activities of EOPD patients.1,2

Conclusion

Study highlights distinct patterns of brain morphometric changes in 

patients with EOPD. Clinical diagnosis of EOPD may benefit from the 

use of quantitative morphological estimation with CAT12.

References

1.Fioravanti V, Benuzzi F, Codeluppi , et al. MRI correlates of Parkinson’s disease 

progression: A voxel based morphometry study. Parkinsons Dis. 2015;378032.

2.Radziunas A, Deltuva VP, Tamasauskas A, et al. Brain MRI morphometric analysis in 
Parkinson’s disease patients with sleep disturbances. BMC Neurol. 2018;18:88.

Brain morphological alterations in early-onset and late-onset Parkinson’s disease compared to age related healthy controls

Achal Kumar Srivastava2

Figure 1. Negative correlation between UPDRS II and gray matter volume (GMV) of 

right supplementary motor cortex, left middle frontal cortex, left precuneus in patients 

with early onset PD at a significance level of p < 0.05 level of p < 0.05.

Brain Region Hemisphere P-value T-value Z-value
Clinical 

Variables

Gray Matter (p<0.05, Holm-Bonferroni corrected)

Frontal 

Lobe

Medial Frontal 

Cortex 
Left 0.02 -3.37 -3.01

UPDRS 

Part II

Parietal Precuneus Left 0.04 -2.93 -2.67
UPDRS 

Part II

Frontal 

Lobe

Supplementary 

Motor Cortex 
Right 0.02 -4.15 -3.54

UPDRS 

Part II

Fractal Dimension (p<0.05, Holm-Bonferroni corrected)

Temporal Fusiform Right 0.01 -4.26 -3.62 LEDD

Occipital Pericalcarine Right 0.05 -3.55 -3.13
UPDRS 

Part III

Gyrification Index (p<0.05, Holm-Bonferroni corrected)

Temporal
Transverse 

Temporal
Left 0.046 -3.38 -3.01

UPDRS 

Part II

Frontal
Pars 

Opercularis
Right 0.008 -3.79 -3.31

UPDRS 

Part II

Cortical Thickness (p<0.05, Holm-Bonferroni corrected)

Frontal
Superior 

Frontal
Right 0.03 -2.3 -2.16

UPDRS 

Part III

Figure 2. ROC curve showing AUC for the mean gray matter volume of right 

supplementary motor cortex, left medial cortex and left precuneus 

Table 1: Region of interest (ROI) correlation analysis of gray matter, cortical 

thickness, gyrification, gyrification index, fractal dimension and clinical variables 

in young onset patients with Parkinson’s disease (EOPD) and young healthy 

controls (YHC) using DK-40 atlas.
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Introduction

Prostate cancer remains a major global health concern, with the U.S. 

reporting 2 million new cases and 0.61 million deaths, while India recorded 

37,948 cases and 18,386 fatalities, ranking among the top ten for incidence 

in 2024 [3]. Accurate segmentation of the prostate, particularly the peripheral 

zone (PZ), is crucial for diagnosis and treatment, including radiotherapy.

Manual segmentation is challenging due to the prostate’s complex structure 

and poor MRI contrast, leading to subjectivity, inconsistency, and time 

consumption. Artificial Intelligence (AI) automates prostate segmentation, 

ensuring consistency and reproducibility. U-Net, a fully convolutional neural 

network, excels in pixel-wise accuracy, while YOLO (You Only Look Once) 

models are optimized for real-time inference. This study compares U-Net 

and YOLO models for prostate segmentation.

Methods

This study used publicly available datasets from The Cancer Imaging 

Archive (TCIA) [1]. Data were pre-processed to match model input 

requirements. A U-Net model was trained for segmentation, while YOLO 

versions 8, 9, and 11 were used for instance segmentation with tailored data. 

Model performance was evaluated using the mean Dice Score, measuring 

overlap between predictions and ground truth. Inference times were also 

recorded to assess computational efficiency.

Results

U-Net achieved the highest segmentation accuracy with a Dice score of 

0.8451, capturing fine anatomical details. Among YOLO models, YOLO 

v11 performed best with a Dice score of 0.8445, closely matching U-Net. 

YOLO v8 and v9 scored 0.8416 and 0.8434, respectively. Notably, YOLO 

models had shorter inference times, making them suitable for real-time use. 

While U-Net generated more precise segmentation masks, YOLO balanced 

accuracy with speed, benefiting time-sensitive applications.

Discussion

Our results highlight a trade-off between accuracy and computational 

efficiency. U-Net demonstrated superior accuracy for prostate segmentation, 

achieving a Dice score of 0.8451, making it reliable for detailed anatomical 

delineation. YOLO models delivered competitive performance with faster 

inference, particularly YOLO v11, which approached U-Net accuracy while 

maintaining efficiency. These trade-offs align with prior studies like Kot et 

al. [2], which emphasized U-Net’s accuracy dominance and YOLO’s real-

time suitability.  

Clinically, YOLO models could enhance time-sensitive workflows like 

intraoperative guidance, while U-Net remains preferable for detailed 

segmentation. This study uniquely compares multiple YOLO versions with 

U-Net, providing insights into their strengths and limitations. Future research 

may explore hybrid models combining U-Net’s precision with YOLO’s 

speed for optimized performance.

Conclusion

AI-driven models like U-Net and YOLO improve prostate segmentation for 

cancer diagnosis and treatment. U-Net offers higher accuracy, making it ideal 

for precision tasks, while YOLO’s speed suits real-time use. Future work will 

explore hybrid models to balance accuracy and efficiency, enhancing 

prostate imaging.

Acknowledgment:

Dr. D.K. Dwivedi and Prof. B.V. Rathish Kumar express their profound 

gratitude to the Indian Council of Medical Research (ICMR), New Delhi for 

their generous funding (Grant No. EM/Dev/IG/27/0337/2023). Furthermore, 

Prof. B.V. Rathish Kumar (IITK, India) and Dr. S.K. Pathak (Pitt, USA) 

extend their heartfelt appreciation to SPARC for their funding support (Grant 

No. SPARC/2019-2020/P1622/SL). Additionally, Dr. D.K. Dwivedi sincerely 

acknowledges the financial support provided by UPCST (Grant No. CST/D-

1381). Dr. D.K. Dwivedi also conveys sincere thanks to the Science and 

Engineering Research Board (now ANRF), New Delhi for their valuable 

funding support under Grant No. SUR/2022/001841).

Comparative Analysis of U-Net and YOLO Models for Prostate Segmentation using MRI Scans
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Singh6, Sanjoy Sureka5, Manoj Kumar6, Saurabh Kumar1.

Model Mean Dice Score Inference Time

Yolo v8 0.8416 0.0755

Yolo v9 0.8434 0.3984

Yolo v11 0.8445 0.133

Unet 0.8451 0.6883

Table 1: Comparison of U-Net and YOLO models in prostate segmentation. 

U-Net had the highest Dice score (0.8451) but the longest inference time 

(0.6883s). YOLO models processed faster, with YOLO v8 being the quickest.

Figure (a) shows the U-Net segmentation output with the original MRI 

image alongside its binary mask. Figures (b), (c), and (d) display the 

outputs of YOLO v8, v9, and v11, respectively, with bounding boxes and 

predicted regions overlaid on the MRI scans, highlighting their 

segmentation performance.
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Introduction

Pancreatitis is an inflammatory condition of the pancreas that can range from mild to 

severe. Acute pancreatitis (AP) presents as a sudden onset of inflammation, while 

chronic pancreatitis (CP) is characterized by persistent inflammation. Although CT is 

the primary imaging modality for evaluating AP, MRI offers significant advantages, 

including superior soft tissue contrast and the absence of ionizing radiation [1]. The 

tissue relaxation properties—T1, T2, and T2* relaxation times—of the pancreatic 

parenchyma can reveal subtle disease changes that may not be visible to the naked eye 

[2-5]. Previous studies have examined T1 in combination with proton density fat 

fraction (PDFF) or T1 and T2 in chronic pancreatitis versus normal subjects. 

However, these values have not yet been reported in patients with acute pancreatitis. 

This study aims to compare the T1, T2, T2*, and PDFF in patients with AP and CP, 

with both normal subjects and individuals who have recovered from a prior episode of 

pancreatitis to help identify if multiparametric MRI of pancreas can reveal tissue 

properties which are not apparent to the naked eye on conventional MRI sequences 

and can help assess pancreatic health, identify subclinical disease and potentially 

predict the nature course of illness.

Materials and Methods

Informed consent was with the approval of the local institutional review board. Data 

was collected prospectively between September and October 2024, and imaging data 

from a total of 96 patients were included in the study, out of which 39 (64 % male) 

had normal appearing pancreas with no prior history of pancreatitis, 18 (67 % male) 

with history of pancreatitis but with normal appearing pancreas, 16 (81 % male)  with 

acute and 23 (83 % male) with chronic pancreatitis (categorized in accordance with 

Revised Atlanta Classification and American Pancreatic Association). T1, T2, T2* 

and PDFF measurements were performed on patients who underwent a clinically 

indicated abdominal MRI (Figure 1). Measurements were performed using vendor-

provided relaxometric techniques on a Philips 3.0T Elition X system. Figure 2 

outlines the seq. parameters. Pancreatic relaxation parameters were measured using 

ROIs that were placed under the guidance of an experienced body imaging 

radiologist. Fluid-containing ducts were avoided in the ROIs. The ROIs were placed 

in three different areas within the pancreas – in the head, body and the tail regions. 

The mean of the three ROIs was taken to obtain an average value for the pancreas. A 

one-way ANOVA test followed by a Tukey-Kramer post-hoc test was performed to 

evaluate the statistical differences between the 4 groups. For instances where the 

differences between the groups were found to be significant, further statistical 

evaluation using the same statistical test was performed to see whether the differences 

came from the head/body/tail of the pancreas.

Results

The mean and standard deviations of T1, T2, T2* and PDFF were measured across all 

groups.  T1 values between AP and CP were significantly different from the normal 

and NPHP groups. There was no statistical difference in T1 of Normal and the NPHP 

groups. T2 showed statistical differences between the CP and the normal group alone. 

There was no statistical difference between T2* values across the groups. In group 

pairs where T1 and T2 relaxation values showed significant differences, we found that 

the difference was coming from at least 2 segments of the pancreas (among head, 

body and tail regions). In PDFF, only the normal group had a significantly different 

(higher) value compared with the other groups. However, individual regions of the 

pancreas did not show a significant difference among the same groups in PDFF.

Discussion and  Conclusion

T1, T2, T2* and PDFF among AP, CP, normals and normals with prior history of 
pancreatitis was studied. In general, we found that T1 and T2 values are significantly 

higher among the patient groups (chronic & acute combined) compared to the normal 
groups (normals & NPHP combined). The higher values may be due to the presence 
of fibrosis or oedema. Furthermore, T1 (but not T2) values in patients with CP were 
significantly higher than in AP patients. These observations are in line with previous 

studies. [7-9] Interestingly, T2* values did not show any difference among the groups. 
This may be due to the competing effects of fibrosis (increasing T2*) and microscopic 
calcification (decreasing T2*). Additionally, no significant difference was found 
between the normal group and the NPHP group, indicating that structural differences 
that may be resulting from a prior episode of pancreatitis are not detectable with MR. 

In conclusion, we find that T1 and T2 values remain the key quantitative MR 

parameters that can be helpful in identifying subclinical disease.

Comparison of Pancreatic T1, T2, T2* & PDFF values between normal, patients with acute, chronic and history of pancreatitis
Monica Gunasingh1,2, Nikhil Suryadevara3, Suvarna Naidu3, Tharani Putta3, Sashidhar Kaza3, Jithin Sreekumar1, and Jaladhar Neelavalli1

FIGURE 2: Parameters of the relaxation time measurement sequences. FOV- Field of View, TR- Repetition 
time, TE- Echo time, TFE- Turbo Field Echo, mDixon- Mult i-point Dixon. The sequences were cardiac and 

respiratory gated. The sequence was accelerated using a SENSE factor of 2.5 and oversampling of 120 mm 

in the phase (Antero-posterior) direction. The T1 relaxat ion sequence is an invers ion recovery (IR) sequence 
with TFE pre-pulse, an IR delay of 350ms and minimum TI (Inversion Time) delay of 266 ms. The T2 
relaxation sequence employs 9 echoes, EPI (Echo Planar Imaging) read-out with an EPI factor of 7.

Figure 1: representative images of T2 Weighted fat suppression, T1, T2, T2* and PDFF in 
a normal subject , a patient with acute pancreatitis , chronic pancreatitis and a normal subject 

with a prior history of pancreatitis. Note that orientation of the T2Fatsat and the quantitative 

maps is slightly different. All quantitative parametric maps were acquired with the same 
planning geometry.  
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Statistically s ignificant differences have been observed in the plot.



Introduction

The progressive illness known as chronic kidney disease (CKD) can 

often be challenging to diagnose in its early stages with conventional 

diagnostic approaches such as serum creatinine and albumin 

assessment. Identifying possible biomarkers for early detection and 

personalized treatment, as well as physiological changes linked to 

early CKD—an area that hasn't been fully investigated before—is the 

goal of this study to address this gap.

Methods

This study presents a metabolomic analysis of 115 human samples 

using 1H nuclear magnetic resonance (NMR), which includes 24 

healthy controls and 91 patients with early-stage chronic kidney 

disease (CKD). To identify metabolites that distinguish early-stage 

CKD, a combination of univariate and multivariate statistical 

techniques was applied, including the Student T-test, ANOVA, PCA, 

PLS-DA, and OPLS-DA.

Results

Myoinositol, pyruvate, creatinine, carnitine, phenylalanine, tyrosine, 

histidine, 2-hydroxyisobutyrate, and 3-hydroxyisobutyrate were 

among the eleven different metabolites that shown significant changes 

(p < 0.05 and VIP > 1) within early-stage CKD stages (G1 vs. G2, G2 

vs. G3A, and G3A vs. G3B). To assess their diagnostic potential, 

ROC analysis was performed, revealing an AUC > 0.7 (95% CI). 

Furthermore, pathway analysis using the KEGG database highlighted 

significant correlations between specific metabolite patterns and key 

metabolic pathways, including the metabolism of inositol phosphate, 

tyrosine, histidine, pyruvate, tryptophan, and phenylalanine, which 

were found to be relevant in early-stage CKD with statistical 

significance greater than 0.1. 

Discussion

As the diseases and its related metabolic alterations progress over 

time, our research is the first to pinpoint a unique metabolomic 

signature that distinguishes the early stages of chronic kidney disease. 

Our knowledge of the early stages of metabolic pathway disturbances 

and the progression of CKD is improved by this research. Changes in 

these metabolic pathways over time may allow us to identify early 

signs of deteriorating kidney function and forecast how the disease 

may develop and allow for earlier therapies to stop or prevent its 

progression.

Conclusion

This study highlights potential biomarkers for the early detection of 

CKD, providing important insights into the biological mechanisms 

underlying the disease’s progression and opening the door to 

personalized treatment strategies aimed at preventing further kidney 

damage.

.

Characterizing Metabolic Changes in Early-Stage CKD For Improved Diagnosis and Personalized Treatment
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Introduction

Compared to conventional measures like ejection fraction, cardiac based strain 

measurements have emerged as a sensitive clinical tool in functional assessment of the 

myocardium [1,2,6]. Echocardiography-based strain evaluation is widely used clinically, yet 

its accuracy varies with operator expertise, whereas cardiac magnetic resonance imaging 
(CMR) ensures reliable and operator-independent strain quantification [2,5]. Despite the 

advantages, cardiac based strain evaluation remains largely unreported in the Indian 

population. Previous studies have primarily focused on CMR-based strain evaluation to 

assess myocardial deformation in patients with hypertrophic cardiomyopathy (HCM) [3,4]. 

The current study aims to evaluate the differences in cardiac strain and its relation to 
ejection fraction (EF) between patients with Hypertrophic Cardiomyopathy (HCM), Dilated 

Cardiomyopathy (DCM), and control subjects. Feature tracking (CMR-FT) based algorithm 

was used for the cardiac strain measurements. 

Methods

We conducted a retrospective study analyzing clinical and imaging data from 224 subjects 

imaged between 2022 and 2023, including 98 HCM patients (median age 54, IQR 23,17% 

women) and 99 DCM patients (median age 53, IQR 19.5, 36% women) and 27 controls 

(median age 41, IQR20.5, 15% women). The inclusion criteria for into HCM and DCM 
groups was based on the clinical diagnosis which was arrived at using structural MRI, 

echocardiography and electrocardiography (ECG) measurements, along with relevant 

clinical parameters. The control group included patients diagnosed with clinical 

cardiovascular symptoms but normal structural CMR and EF. All subjects underwent CMR 

on a 1.5T scanner (Ingenia, Philips). The imaging protocol included steady-state free 
precession cine images in two long-axis views and continuous short-axis slices covering the 

entire left ventricle. Strain parameters (Global Radial Strain, Global Circumferential Strain, 

and Global Longitudinal Strain) were assessed via CMR-FT using vendor supplied software 

(ISP Ver. 12, Philips). One-way ANOVA with post-hoc analysis was used to evaluate group 

differences, and linear regression was used for analysing correlations between strain 
parameters and EF. Table 1 shows the sequence parameters used for the cardiac MR Cine 

protocol.

Results
Significant differences were observed in the correlation of different strain measures with 

ejection fraction across the three patient groups. The R value for GRS, GCS and GLS w.r.t 

ejection fraction was 0.184, 0.188, 0.13 for HCM patients, 0.57, 0.75, 0.70 for DCM 

patients and 0.27, 0.17, 0.21 for control subjects respectively (See Figure 1). Using 

Fischer’s z-test, statistically significant differences were observed in the R values for GRS, 
GCS and GLS, between HCM-DCM and DCM-Control groups, except for the GRS values 

between DCM and Control group. However, no statistically significant differences were 

found between the HCM and Control groups. The box plot in Fig. 2 demonstrates the 

differences in GRS, GCS, and GLS values between HCM, DCM, and healthy subjects. One-

way ANOVA followed by Tukey-Kramer post-hoc analysis indicated that all strain 

parameters, except for GLS between HCM and DCM patients, showed statistically 

significant differences (p<0.001).

Discussion

We evaluated the differences in strain vs. EF relationship between HCM, DCM and control 

group. We believe this is the first such study in the Indian population. DCM patients showed 

a stronger correlation with EF, compared to HCM patients and control subjects. This aligns 
with clinical observations, where an abnormal strain in HCM patients doesn’t necessarily 

correspond to an abnormal EF, suggesting potential compensatory mechanisms that helps in 

preserving EF. Within the DCM and HCM groups, GCS showed slightly stronger 

correlation with the EF compared to GLS. This may be due to the significant involvement of 

the circumferential layer in addition to longitudinal fibers.

Conclusion

CMR-FT based strain measures could serve as an early indicator for risk stratification, 

especially in HCM patients.

Comparative analysis of cardiac strain and ejection fraction in dilated and hypertrophic cardiomyopathy patients using MR imaging
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Table 1: Parameters of the cardiac MR Cine protocol- SA- Short Axis, 2Ch- 2 Chamber View, 4Ch- 

4 Chamber view, FOV- Field of View, TR- Repetition time, TE- Echo time, SENSE P reduction 

Fac tor of 2, oversampling of 110mm.

Figure  1: Correlation between diffe rent strain parameters and the corresponding Ejection 

Fraction for A. HCM, B. DCM and C. Control subjects. Statistically significant differences in 

R² values for GRS, GCS, and GLS were identified using Fisher's z-test between the  HCM-

DCM and DCM-Control groups, except for GRS between the DCM and Control groups.

Figure  2: The box plots for (a ) GRS, (b) GLS and (c) GCS for all HCM, DCM and Control 

subjects. All the strain values, except for GLS between DCM and HCM, showed significant 

dif ference between the  groups.
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Introduct ion

Accurate segmenta tion of brain tumors from Magnetic Resonance Imaging (MRI) scans is crucial for 

diagnosis, monitoring disease progression, and formulating treatment strategies. While traditional 

methods are labor-intensive, advanced deep-learning techniques are being explored for more eff icient 

and precise segmenta tion. In this study, we compare the performance of five sta te-of-the-art 

segmenta tion models: U-Net, nnU-Net, Attention-UNet, ELU-Net and U-Net++ [1-7], using the 

BraTS[8-9] and a private experimenta l datase t consisting of T2-FLAIR (Fluid-Attenuated Inversion 

Recovery) and Post-Contrast T1-weighted MRI scans. We further do some fine tuning on the best model 

by modifying the activa tion functions and derive two more models. We evalua te the model 

performances based on Dice and Jaccard scores [10-11], with nnU-Net consistently achieving the 

highest accuracy among existing models, but our models are able to get better accuracy particularly after 

transfer-learning on the experimenta l datase t.

Methods

The BraTS datase ts contain MRI scans (from the year 2019-2021) from 19 institutions stored in NIfTI 

format. We've used post-contrast T1-weighted (T1PC) and T2-FLAIR modalities for training dif ferent 

UNet models [Table I]. Expert neuro-radiologists validated manual annotations, marking three regions: 

Necrotic and non-enhancing tumor core, Enhancing tumor region, and Per itumoral edema. A private 

MRI datase t of 64 glioblastoma (GBM) patients with 2,400 slices was acquired at the University of 

Pennsylvania under a collaboration with TCG CREST (data sharing ID: RIS76150) using a 3T Tim Trio 

MR scanner. High-resolution post-contrast T1-MPRAGE and T2-FLAIR images were coregistered to 

lower-resolution Dif fusion Tensor Imaging (DTI) - B0 images, with a resolution of 128x128x35, as part 

of a continuation of a projec t focused on quantitative MR imaging, resulting in lower-resolution images 

being used for segmenta tion. Using a semi-automated algorithm, lesions were segmented into Contrast-

enhanc ing (ET), Non-enhancing (NCR), and Edema [12]. This is used as a ground truth. Manual skull 

str ipping was necessary as automated tools struggled with the lower-resolution images. We used Adam 

optimizer with learning rate 0.001, Binary Cross-Entropy as the loss function for 100 epochs. We 

trained the first model on BraTS datase t with 20,000 slices for training and 4,000 slices for validation, 

while for transfer learning we considered 2,000 slices for training and 400 slices for validation from the 

private datase t. We evalua te the model's performance using the Dice score and Jaccard Index [13-16]. 

We derived two new models PReLUNET & Weighted ReLU-Net by modifying the activa tion function 

of nnU-Net. In PReLUNET, we replaced the LeakyReLU activa tion in nnUNet with PreLU. Similarly, 

in Weighted ReLU-Net, we substituted the LeakyReLU in nnUNet with a weighted sum of PreLU and 

ReLU. Here the weights are also trainable parameters.

Results

On the BraTS validation datase t [Fig 1] [Table II] , nnU-Net, PReLUNET & Weighted ReLU-Net 

achieved the highest performance with a Dice score of 88.95%, 88.96% and 88.91% respectively, 

followed by AttentionUNet and U-Net++. ELU-Net performed slightly lower, while standard U-Net had 

the lowest score. When tested on the private datase t [Table II] , performance dropped, with Dice scores 

between 59% and 65%. nnU-Net & Weighted ReLU-Net remained the top performers, followed by U-

Net++ and Attention-UNet. To address the performance drop, transfer-learning was applied in three 

phases: retraining the last decoder stage, the last two decoder stages, and all decoder stages [Fig 2]. 

Retraining only the last decoder stage improved Dice scores to 67%-74%, with Weighted ReLU-Net 

performing best [Table III ]. Retraining the last two decoder stages led to a signif icant boost for nnU-Net, 

achieving an 82.98% Dice score, with other models also improving. After retraining all decoder stages, 

most models exceeded 80% Dice score, with Weighted ReLU-Net reaching the highest performance at 

85.65%.

Conclusion

On the BraTS datase t, nnU-Net was the top performer among the existing models, achieving a Dice 

score of 88.95% and a Jaccard score of 80.43% [Table II]. Attention-UNet and U-Net++ also performed 

well, but nnU-Net consistently outperformed them due to its robust self-adaptive framework [17-18]. 

Observing these strengths of nnUNet architecture , we modif ied the activa tion function of nnUNet and 

derived two new models PReLUNET & Weighted ReLU-Net to improve the accuracy further. On the 

private datase t, all models saw a performance drop, with Weighted ReLU-Net and nnUNet leading with 

a Dice score of 64.60% and 64.07% resp. This variation highlights the challenges of applying models 

across datase ts with different charac ter istics and emphasizes the impor tance of domain adapta tion 

strategies. Retraining experiments indicated tha t performance improvements were most signif icant when 

all decoder stages were retrained. Weighted ReLU-Net and Attention-UNet exhibited notable gains, with 

Weighted ReLU-Net achieving a Dice score of 85.65% on the private datase t after complete retraining 

[Table III ]. This suggests tha t using a combination of multiple activa tion function enhances model 

generalization and performance across different datase ts. A learned combination of activa tion functions 

can help maintain stable gradients and improve training efficiency. Using deep-learning models for 

tumor segmenta tion aids in accura tely determining tumor volume, crucial for assessing post-treatment 

related changes. Training on BraTS and transfer-learning on private data are necessary due to the lack of 

public ly available post-treatment MRI datase ts. This study has several limitations. First, model 

performance on the private datase t showed a signif icant drop compared to the BraTS datase t, suggesting 

issues with datase t-specif ic generalization. Second, the small sample size of the private datase t limits 

the robustness of our findings. The low image resolution used for the private datase t and ground truth 

ROIs required predic tions on these low-resolution images, leading to the manual skull-str ipping tha t 

may have affected segmenta tion accuracy. Finally, GPU limitations prevented training with 3D images. 

Future studies will focus on drawing ROIs on high-resolution images for predic tions.
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Table II: Dice Sc ore and  J accar d Index for  valid ation 
re sults on Br aTS dat a and on pr iva te dat a

Table III: Dice Sc ore and  J accar d Index for  valid ation r esults on pr ivate dat a afte r 
tr ansfer  learnin g

Name  
of t he

 
Ar chit

e-
ct ure

Va lidation  o n 
Br aTS Data

Va lidation  o n 
Pr ivate Data

Na
me  
of 

th e
 

Ar ch
ite-
ct ur

e

Train ing only 
Last  

Decode r Sta ge

Train ing only 
Last  Two 

Decode r Layers

Train ing only All 
Decode r Layers

Dice Ja cc Dice Ja cc Dice Ja cc Dice Ja cc Dice Ja cc

U-net 85. 23% 74. 79% 59. 84% 43. 22% U-net 67. 10% 50. 91% 73. 74% 58. 84% 82. 19% 70. 17%

nnU-Net 88. 95% 80. 43% 64. 07% 47. 62% nnU-Net 69. 86% 54. 36% 82. 98% 71. 19% 84. 46% 73. 43%

At tent ion 
U-Net 87. 29% 77. 82% 60. 64% 44. 04%

At tent ion 
U-Net 67. 65% 51. 58% 79. 38% 66. 15% 85. 06% 74. 32%

ELU-Net 86. 41% 76. 49% 59. 56% 43. 00% ELU-Net 71. 04% 55. 47% 71. 02% 55. 45% 71. 02% 55. 44%

U-Net+ + 87. 21% 77. 67% 62. 13% 45. 57% U-Net+ + 70. 07% 54. 38% 77. 21% 63. 32% 84. 37% 73. 22%

PR eLUNet 88. 96% 80. 47% 60. 28% 43. 61% PR eLUNet 69. 66% 54. 20% 82. 18% 70. 05% 83. 03% 71. 26%

W eighted  
R eLU-Net 88. 91% 80. 37% 64. 60% 48. 20%

W eighted  
R eLU-Net 74. 64% 60. 11% 81. 26% 68. 83% 85. 65% 75. 15%
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Introduction

Magnetic Resonance Imaging (MRI) is widely used in clinical diagnostics, 

offering techniques such as Diffusion-Weighted Imaging (DWI) and Diffusion 

Tensor Imaging (DTI). However, a major limitation is the deterioration of image 

quality in reformatted 3D visualizations derived from 2D acquisitions. Direct 3D 

MRI scanning would yield superior results but is often impractical due to 

extended scan times and patient movement artifacts, especially in less cooperative 

or pediatric patients [1] [2]. These limitations are especially pronounced in 

neurological assessments where precise visualization of fine anatomical structures 

is crucial, and in emergency settings where rapid imaging is essential. Our study 

aimed to address this challenge by introducing a computationally efficient 3D 

patch-based super-resolution method that enhances reformatted MRI 

visualizations without requiring additional scans, improving diagnostic quality 

while maintaining feasible computational demands. Our method significantly 

improves diagnostic quality while maintaining feasible computational demands, 

offering a practical solution for clinical implementation.

Methods

Data used to prepare this article were obtained from the IXI (Information 

eXtraction from Images) database (https://brain-development.org/ixi-dataset/). 

The IXI dataset is a collection of nearly 600 MR images from normal, healthy 

subjects, including T1, T2, PD-weighted, and MRA images, acquired at three 

different hospitals in London which are widely used as a reference dataset in 

neuroimaging research. The training was conducted using 3D T2-weighted MRI 

scans, pre-processed using MRtrix for volume conversion and histogram 

matching to ensure consistent intensity distributions. Dataset preparation included 

changes in slice thickness and changes in voxel shapes which were done to match 

it with the original 2D acquisition parameters. After which MRtrix was used 

again to reformat the data and get an isotropic volume .A specialized 3D super-

resolution system built around a modified U-Net architecture that processes 

32×32×32 voxel patches with a 16-voxel stride pattern [3] [4]. The network 

incorporates custom-designed ConvBlock3D and ResidualBlock3D components 

with skip connections, optimized for preserving fine anatomical details during the 

enhancement process as shown in Fig.1. The model training system employs the 

dual patch validation strategy, which includes aggressive mode (strict quality 

enforcement) and normal mode (broader coverage), improving robustness across 

diverse patches. Figure 3 (a) shows the complete pipeline of our research 

methodology steps. The training was performed on a Windows-based Dell 

Precision 3640 Tower equipped with Intel Core i7 CPU and Quadro P1000 GPU. 

The training process leverages a combined loss function incorporating L1 loss, 

MSE, and gradient difference loss for edge-based training, optimized using Adam 

with a carefully tuned learning rate of 5e-5 and adaptive learning rate scheduling 

which helps us to get a better-reformatted image compared to interpolation 

method.

Results

Our optimized U-Net architecture demonstrated significant improvements over 

standard interpolation techniques, as evaluated over 100 training epochs (Fig.2). 

Quantitative evaluation showed significant enhancement in image quality metrics, 

with Peak Signal-to-Noise Ratio (PSNR) improving from 25.48 dB to 29.02 dB 

and Structural Similarity Index (SSIM) increasing from 0.71 to 0.82, as shown in 

Fig.3 (b). This patch-based approach proved especially effective in maintaining 

computational efficiency while preserving anatomical detail across varying 

structures. The model's robustness was further validated through successful 

application to novel datasets, confirming its generalization capabilities and 

practical clinical utility. These results establish a strong foundation for 

refinements in MRI enhancement techniques.

Discussion

Current super-resolution approaches for MRI enhancement face several key 

limitations. Traditional methods either process 2D slices independently, 

potentially introducing artifacts at slice boundaries or require substantial 

computational resources for complete volume reconstruction. Our patch-based 

approach addresses these challenges while introducing some trade-offs that 

warrant discussion. The primary advantage of our method lies in its 

computational efficiency, achieved through strategic patch selection and 

processing. By utilizing 32×32×32 voxel patches with a 16-voxel stride pattern, 

we balance enhancement quality with processing speed. Our experiments 

demonstrate that this approach reduces memory requirements by approximately 

60% compared to full-volume processing while maintaining high-quality 

reconstruction. However, we observed minor artifacts at patch boundaries, 

particularly in regions with high anatomical complexity. Future work should 

focus on optimizing patch boundary handling and exploring adaptive patch sizing 

based on anatomical features. Additionally, implementation in clinical workflows 

will require careful consideration of hardware requirements and integration with 

existing PACS systems.

Conclusion

Our study presents a computationally efficient, 3D patch-based super-resolution 

framework for enhancing reformatted MRI visualization. Our novel dual-mode 

patch validation system and custom loss function effectively address the 

challenges of 3D volume enhancement while maintaining practical computational 

requirements. The method demonstrates clear advantages over conventional 

interpolation-based reformatting while maintaining practical computational 

demands. Its successful generalization to external clinical data highlights its 

potential for real-world implementation. Future work will focus on broader 

validation across diverse imaging protocols and integration into clinical 

diagnostic workflows.

Computationally Efficient 3D Patch-Based Super-Resolution for Enhanced Reformatted MRI Visualization
Siddharth Singh1, Durgesh Kumar Dwivedi*1, Ranjeet Ranjan Jha2, B V Rathish Kumar3, Sudhir Kumar Pathak4 

Figure (a) shows the U-Net segmentation output with the original MRI image alongside its binary mask. Figures 

(b), (c), and (d) display the outputs of YOLO v8, v9, and v11, respect ively, with bounding boxes and predicted 

regions overlaid on the MRI scans, highlighting their segmentation performance.
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Introduct ion

Glioblastoma (GBM) is a highly aggressive brain tumor with limited survival rates despite extensive 

treatment [1-3]. Dif ferentiating between trueprogression (TP) and pseudoprogression (PsP) remains a 

diagnostic challenge, as both appear to be similar on MRI [4,5]. Dynamic contrast-enhanced MRI(DCE-

MRI) allows the extraction of pharmacokinetic (PK) parameters, such as Ktrans ,Kep,Ve,Fp and τi 

assess tumor vascularity and permeability [6]. We applied a clustering-based approach using a 

parsimonious PK model selected via Akaike Information Criterion (AIC) [7] to dif ferentiate TP from 

PsP. Additiona lly, dif fusion tensor imaging (DTI) and Dynamic susceptibility contrast (DSC) MRI data 

were analyzed using the clustering approach [8].

Methods

This retrospective study inc luded 57 GBM patients (TP: n=38, PsP: n=19) acquired using a 3T Tim Trio 

MR scanner at the University of Pennsylvania and shared with TCG CREST (data sharing ID: 

RIS76150). DCE-MRI data was fitted to five PK models (nonlinear Tof ts, extended Tof ts, Shutter-

Speed, 2CXM, and3S2X models) to generate parametr ic maps for Ktrans, Kep, Ve, Fp  and τi [6]. A 

parsimonious PK model was chosen based on AIC [9-10]. Clustering using K-means++ [11] was applied 

to classify pixels into low, medium, and high-intensity regions. Pixels with poor goodness of fit (R²) < 

0.2 were defined as necrotic pixels. After clustering, median thresholding [12-13] was performed on the 

centroids across all datase ts to determine high and low clusters globally. Tumors were segmented into 

enhanc ing, non-enhancing, and edema regions using the nnU-Net algorithm [14]. Percentage pixels for 

each cluster was calculated as the ratio of no. of pixels in tha t cluster and the total no. of pixels in 

(enhancing + non-enhancing) region. 26 cases (TP: n=13, PsP:n=13) were analyzed for the calculation 

of mean dif fusivity (MD) using DTI and cerebral blood volume (CBV) using DSC imaging, 

respectively.

Results

Clustering Analysis (Figs. 1, 2)

Ktrans : TP cases show, higher percentage of high-intensity pixels (0.20) compared to PsP (0.10),with 

sta tistically signif icant p=0.0019, indicating increased perfusion and permeability in TP,while PsP cases 

have more low-intensity pixels, ref lec ting reduced perfusion.

Ve: TP cases had higher percentage of high-intensity pixels (0.21) than PsP (0.12), difference was 

sta tistically signif icant. p=0.0048.

Ktrans (Figs. 2 & 3):Enhancing & Non-Enhancing Regions: Mean Ktrans values were signif icantly 

different between TP (0.13 min⁻¹) and PsP (0.06 min⁻¹), p=0.008, suppor ting Ktrans as a robust marker 

for distinguishing progression types.

Enhancing Region: TP showed higher mean Ktrans (0.22 min⁻¹) compared to PsP (0.10 min⁻¹), p=0.048, 

validating Ktrans role as a differential marker.

Kep (Fig. 3): Enhancing & Non-Enhancing Regions : Mean Kep values differed signif icantly between 

TP (1.04min⁻¹) and PsP (0.66 min⁻¹), p=0.03, indicating potential tissue or vascular changes post-

treatment.

Enhancing Region: TP cases exhibit higher mean Kep (1.15 min⁻¹) than PsP (0.64 min⁻¹), p=0.008.

Tumor Volume (ca lculated after automated nnU-Net segmenta tion-Fig.2):

Volume: TP cases had larger tumor volumes (mean = 17.1 cm³) than PsP (mean = 10.8 cm³) , p=0.07, 

ref lec ting more aggressive growth in TP.

CBV and DTI (Fig. 4):

CBV: TP cases showed, higher CBV (mean = 842.34 mL/100g) than PsP (mean = 669.00 mL/100g), not 

sta tistically signif icant.

MD: Mean diffusivity (MD) was slightly higher in TP (mean = 0.00136 mm²/s) than in PsP (mean = 

0.00124 mm²/s), without sta tistical signif icance.

Discussion

The results show tha t both high-intensity clusters of Ktrans and Ve differ signif icantly between TP and 

PsP, with mean Ktrans values signif icantly higher in TP  than in PsP highlighting increased vascular 

permeability and perfusion as key markers of true progression There was also a sta tistically signif icant 

difference in  mean Kep between TP and PsP , further indicating treatment response. Tumor volume was 

larger in TP, consistent with its more aggressive nature. 

Conclusion

Our clustering-based analysis of Multiparametr ic-MRI demonstrates tha t high-intensity clusters of 

Ktrans, Ve, mean Ktrans and mean Kep are sta tistically signif icant parameters for differentiating TP 

from PsP. Tumor volume difference between TP and PsP was near signif icant (p=0.07), suggesting tha t 

TP is associated with more severe tumor profile. These findings suppor t using DCE-MRI and clustering 

techniques as non-invasive tools for distinguishing TP from PsP. Future studies should validate these 

results with larger datase ts and integrate more comprehensive multimodal imaging data.

References

1.Schaff, Lauren R., and Ingo K. Mellinghoff. "Glioblastoma and other primary brain malignancies in adults: a review." Jama 329, no. 7 (2023): 

574-587.

2.Hanif, Farina, Kanza Muzaffar, Kahkashan Perveen, Saima Mehmood Malhi, and Shabana Usman Simjee. "Glioblastoma multiforme: a review 

of its epidemiology and pathogenesis through clinical presentation and treatment." Asian pacific journal of cancer prevention 18, no. 1 (2017): 3-9.

3.Fernandes, Catarina, Andreia Costa, Lígia Osório, Rita Costa Lago, Paulo Linhares, Bruno Carvalho, and Cláudia Caeiro. "Current standards of 

care in glioblastoma therapy." Exon Publications (2017): 197-241.

4.Fekete, B., K. Werlenius, M. Tisell, A. Pivodic, A. Smits, A. S. Jakola, and B. Rydenhag. "What predicts survival in glioblastoma? A 

population-based study of changes in clinical management and outcome." Frontiers in surgery 10 (2023): 1249366.

5.Young, Jacob S., Nadeem Al-Adli, Katie Scotford, Soonmee Cha, and Mitchel S. Berger. "Pseudoprogression versus true progression in 

glioblastoma:what neurosurgeons need to know." Journal of neurosurgery 139, no. 3 (2023): 748-759.

6.Bhaduri, Sourav, Clémentine Lesbats, Jack Sharkey, Claire Louise Kelly, Soham Mukherjee, Arthur Taylor, Edward J. Delikatny, Sungheon G. 

Kim, and Harish Poptani. "Assessing tumour haemodynamic heterogeneity and response to choline kinase inhibition using clustered dynamic 

contrast enhanced mri parameters in rodent models of glioblastoma." Cancers 14, no. 5 (2022): 1223.

7.Cavenaugh, James Stephens. 2020. “Bootstrap Cross-Validation Improves Model Selection in Pharmacometrics.” Statistics in Biopharmaceutical 

Research 14 (2): 168–203. doi:10.1080/19466315.2020.1828159.

8.Wang, S., M. Martinez-Lage, Y. Sakai, S. Chawla, S. G. Kim, M. Alonso-Basanta, R. A. Lustig et al. "Differentiating tumor progression from 

pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI." American Journal of 

Neuroradiology 37, no. 1 (2016): 28-36.

9.Fusco, Roberta, Mario Sansone, Silvio Maffei, Nicola Raiano, and Antonella Petrillo. "Dynamic contrast-enhanced MRI in breast cancer: A 

comparisonbetween distributed and compartmental tracer kinetic models." Journal of Biomedical Graphics and Computing 2, no. 2 (2012): 23.

10.Akaike, Hirotugu. "A new look at the statistical model identification." IEEE transactions on automatic control 19, no. 6 (1974): 716-723.

11.Arunkumar, N., Mazin Abed Mohammed, Mohd Khanapi Abd Ghani, Dheyaa Ahmed Ibrahim, Enas Abdulhay, Gustavo Ramirez-Gonzalez, 

and VictorHugo C. de Albuquerque. "K-means clustering and neural network for object detecting and identifying abnormality of brain tumor." Soft 

Computing 23(2019): 9083-9096.

12.Wiharto W, Suryani E. The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels. Acta 

InformMed. 2020 Mar;28(1):42-47. doi: 10.5455/aim.2020.28.42-47. PMID: 32210514; PMCID: PMC7085333.

13.Pander, T., 2022. A new approach to adaptive threshold based method for QRS detection with fuzzy clustering. Biocybernetics and Biomedical 

Engineering, 42(1), pp.404-425.

14.Isensee, Fabian, Paul F. Jäger, Peter M. Full, Philipp Vollmuth, and Klaus H. Maier-Hein. "nnU-Net for brain tumor segmentation." In 

Brainlesion:Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction 

with MICCAI 2020, Lima,Peru, October 4, 2020, Revised Selected Papers, Part II 6, pp. 118-132. Springer International Publishing, 2021.

Clustering-Based Multiparametric MRI for Differentiation Between True Tumor Progression and Pseudoprogression in Glioblastoma

I S M R M  |  I N D I A N  C H A P T E R  2 0 2 5 P R O C E E D I N G S

¹Institute for Advancing Intelligence, TCG Centres for Research and Education in Science and Technology, Kolkata, India,²Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.,³Academy of Scientific and Innovative 

Research (AcSIR), Ghaziabad, India.,4Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

Sourav Basak¹, Gabriela W Kostrzanowska², Subhanon Bera¹,³, Archith Rajan4, Sanjeev Chawla4, Harish Poptani², Sourav Bhaduri¹,³



Introduction

Parkinson’s Disease (PD), a progressive neurodegenerative disorder, is typified by 

dopaminergic neuron loss in the substantia nigra. Although PD affects ~1% of people over 

60 years of age; around 10% of cases present as Young-Onset Parkinson's Disease (YoPD), 

where symptoms begin before 50 years and exhibit different clinical progression compared 
to typical PD. Neuroimaging [voxel-based morphometry (VBM), surface-based 

morphometry (SBM), and tractography] has been used to unveil structural brain alterations 

in PD and YoPD, with a particular emphasis on early stages and disease progress1. 

Deformation-based morphometry (DBM) is an effective modality in detecting subtle 

morphological changes2–4, but widespread clinical usage in PD has been limited. This 
study aims to use DBM and SBM to develop insights into morphometric patterns in 

clinically stable PD and YoPD. 

Methods
53 PD (27 YoPD with onset <50 years and 26 PD with onset >50 years), all with Hoehn & 

Yahr (H&Y) stage up to 3 and right-sided symptom onset, were recruited from the 

Movement Disorders clinic. PD were screened based on UKPD Brain Bank criteria, with 

exclusions for neuropsychiatric comorbidities and contraindications to MRI. Clinical 

assessments included the Unified Parkinson’s Disease Rating Scale (UPDRS), Parkinson’s 
Disease Questionnaire-39 (PDQ-39), and Purdue Peg Board (PPB) tests, with all 

evaluations conducted in the “ON” state. 15 healthy volunteers were recruited from local 

population. 3D T1-weighted scans were acquired on a 3T scanner (Achieva 3T) using 

TR/TE: 8/4 ms, flip angle=8°, 1mm slices, FOV=232 mm with a 32-channel head coil.  

For cortical volume and thickness estimation, cortical surface reconstruction data were 

preprocessed with FreeSurfer5, including skull-stripping, segmentation of gray matter 

(GM), white matter (WM), and cerebrospinal fluid, and cortical surface generation using 

mri_watershed and bias field correction. Cortical thickness was measured from pial to white 
matter surfaces, smoothed at 10 mm FWHM. DBM analysis, conducted with the 

Computational Anatomy Toolbox (CAT12) in SPM123,6,7, involved preprocessing to 

resample, bias-correct, and affine-register images to SPM's unified segmentation protocol, 

including skull stripping, brain parcellation, and tissue classification. Local morphological 

changes were assessed with Jacobian determinant maps.  

Statistical comparisons between groups (HC vs. PD, PD vs. YoPD, etc.) were made using 

general linear models with False Discovery Rate (FDR) correction for multiple 

comparisons, at p<0.05. 

Results

Healthy controls (HC, n=15, age=40.78 ± 7.58 years), PD (age=65.42 ± 5.73), and YoPD 

(age=51.29 ± 4.36) groups highlighted differential structural changes by disease duration. 

Both PD and YoPD groups were further stratified by disease duration into PD<5 (age=63.23 
± 5.04), PD>5 (age=67.62 ± 5.72), YoPD<5 (age=49.26 ± 3.08), and YoPD>5 (age=53.83 ± 

4.51) groups. Clinically the PD and YoPD were stable and no differences were observed in 

scores across groups.  

Thickness Analysis: Significant cortical thinning was observed in PD [bilateral superior 
temporal gyrus, precuneus, middle temporal region, left lingual gyrus, pars orbitalis, and 

inferior parietal lobule]; PDless [left- precuneus, superior frontal gyrus, and supramarginal 

gyrus, and right- inferior parietal lobule, precuneus, pars triangularis, and precentral region]; 

YoPD [left- lingual and superior frontal gyri, and the right pericalcarine region]; YoPD less 

[left cuneus and right superior parietal region]. 

Volume Analysis: Significant decrease in GM volume was observed in PD [left inferior 

parietal lobe, lateral orbitofrontal gyrus, supramarginal gyrus, precentral gyrus, lingual 

region, and middle temporal region and right- lateral occipital region, superior frontal gyrus, 
and pars triangularis]; PDless [left- inferior parietal, pars orbitalis, lingual, supramarginal, 

superior frontal, and inferior temporal regions; and right- pars-opercularis, inferior temporal 

region, inferior parietal lobe, superior frontal gyrus, supramarginal gyrus and lateral 

orbitofrontal regions.]; YoPD [left- left lateral occipital region]; YoPD less [left- lingual, 

caudal middle frontal regions and right -inferior parietal, cuneus, pars-opercularis regions]. 

DBM Analysis: DBM detected significant atrophy in PD [in left subgyral region within 

temporal lobe, postcentral gyrus, superior frontal gyrus, superior parietal lobule and right- 

superior frontal gyrus, cuneus, inferior parietal lobule; bilateral cerebellar declive]; PDless 

[left insula, anterior cingulate, declive, superior temporal gyrus and right thalamus, insula]; 
YoPD [left precuneus, superior frontal gyrus, postcentral gyrus, declive and right thalamus 

(medial dorsal nucleus), postcentral gyrus]; YoPD less [left cingulate gyrus, cerebellum 

(culmen and tonsil) and right inferior frontal gyrus]. 

Discussion

DBM revealed subtle atrophic changes in subcortical and cerebellar regions in addition to 

cortical regions as compared to volumetric analyses. In spite of similar clinical status across 
groups, the study iterated on the potential of DBM as an imaging biomarker in PD-

associated neurodegeneration. 

Conclusion

DBM provides critical insights into the structural alterations associated with PD and YoPD. 
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Introduction

Glioma is the most common type of brain tumor, classified into low-grade glioma 

(LGG) and high-grade glioma (HGG). While biopsy is the standard method for 

glioma classification, it is invasive and prone to complications. Magnetic 

resonance imaging (MRI) derived features are frequently used for non-invasive 

glioma classification. Glioma primarily spreads/diffuses via white matter (WM) 

pathways to the surrounding brain regions. This leads to compromised WM 

structural integrity which cannot be assessed in conventional MRI sequences. 

Such an assessment of the tumor pathophysiological effects on the WM structural 

integrity can be obtained using diffusion tensor imaging (DTI). Previous studies 

have shown that glioma is not merely a local phenomenon but also a global 

phenomenon because glioma invades surrounding brain tissues often 

compromising its WM structural integrity. However, existing DTI-based deep 

learning studies have primarily considered glioma as a local phenomenon, 

training convolutional neural networks (CNNs) exclusively on tumor-region 

images. Moreover, these studies lack clinical interpretability in their trained deep-

learning models. In this study, we address these gaps by using DTI MRI volume 

(i.e., a 3D image) of the normal-appearing WM (NAWM, i.e, the non-tumorous 

region/WM excluding the whole tumor region) to train a 3D CNN model for 

classifying LGG and HGG patients. We hypothesize that the trained 3D CNN 

model will capture differential diffuse patterns from the NAWM region between 

LGG and HGG patients, enabling high classification accuracy, sensitivity, and 

specificity. Additionally, we have integrated occlusion sensitivity analysis 

(OSA), a model interpretability method into this deep learning framework which 

will highlight the regions primarily focused by the 3D CNN model for decision-

making (whether LGG or HGG). These regions will also reveal the potential WM 

damage in the surrounding brain tissues beyond tumor boundaries which may be 

differentially affected in the LGG and HGG patients due to tumor 

pathophysiology. 

Methods

Routine clinical (i.e., low-resolution images as opposed to high-resolution 

research scans) DTI MRI volumes from 86 patients (39 LGG, 47 HGG) were 

acquired from Sree Chitra Tirunal Institute for Medical Sciences and Technology, 

Trivandrum. These DTI MRI volumes were processed to obtain fractional 

anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean 

diffusivity (MD) images of the NAWM region for each patient. A 3D CNN 

model was trained using individual DTI maps of the NAWM region from 76 

patients and was evaluated based on the model’s accuracy, sensitivity, and 

specificity. OSA was performed on the remaining 10 patients (5 LGG, 5 HGG) 

using the DTI map for which the 3D CNN model achieved more than 90 % 

accuracy. The heatmap obtained from the OSA will reveal the regions primarily 

focused on by the 3D CNN for glioma classification. Fig. 1 shows the overview 

of the methodology. 

Results

Our clinically interpretable 3D CNN model achieved 92% accuracy with FA and 

90% with MD images of the NAWM region. OSA revealed that the 3D CNN 

model primarily focused on the regions surrounding the tumor boundaries where 

the extent of these regions was more widespread in HGG when compared to LGG 

as shown in Fig. 2. 

Discussion

This study examined the global impact of glioma on the NAWM region and its 

role in glioma classification. The 3D CNN model achieved superior accuracy, 

sensitivity, and specificity when trained with FA and MD images of NAWM. 

These findings highlight the sensitivity of FA and MD metrics in capturing 

tumor-induced subtle WM changes in the surrounding brain regions beyond 

tumor boundaries. Moreover, OSA revealed extensive WM damage in HGG that 

extended beyond tumor boundaries, often reaching the contralateral hemisphere. 

In contrast, LGG showed more localized WM alterations near tumor boundaries 

as shown in Fig. 2. 

Conclusion

This study underscores the potential of NAWM analysis for glioma classification 

while providing clinically interpretable insights into the differential impact of 

tumor-induced WM alterations in LGG and HGG patients. The integration of 

DTI-based NAWM analysis with 3D CNN enables accurate, non-invasive glioma 

classification while incorporating OSA into the framework will provide clinically 

interpretable results for the clinicians. Additionally, as this method does not rely 

on handcrafted features, it can be seamlessly integrated into clinical workflows, 

enhancing diagnostic precision and supporting personalized treatment strategies. 

Keywords

LGG, HGG, MRI, diffusion tensor imaging, brain, 3D CNN, occlusion 

sensitivity, white matter 

Fig. 1. Overview of the proposed methodology 

 Fig. 2. OSA heatmap comparison between a typical LGG and HGG patient 

Clinically interpretable 3D CNN for glioma classification using diffusion tensor imaging of normal-appearing white matter 
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Introduction

One of the main hurdles for widespread clinical adaptation of Cardiac MRI 

(CMR) is its complex planning which requires considerable technologist’s 

expertise, and double-oblique planning for imaging the clinically relevant 

cardiac planes. Hence automated or semi-automated planning is a critical clinical 

need for CMR examinations. As the development of the AI models for automatic 

cardiac MRI planning[1] accelerate, one of the key questions that needs 

addressed is the generalizability of these AI models, which are typically trained 

with data obtained from specific regions. 

In this regard, our goal is to define heart shape descriptors that can be measured 

and characterized across different geographies. Major aspects that affect the 

planning of the heart are its shape, size, and the orientation of the heart 

chambers. In this study, we have considered Atrio Ventricular angle ([2], angle 

made between the long axis of the atrium and the ventricle) measured in vertical 

and horizontal long axis of the heart and investigated how these angles vary 

across populations from three different geographies. 

Methods

All data were obtained with informed consent of the patients undergoing 

clinically indicated Cardiac MR exams. A standardized 3D survey [3] data with a 

breath-hold duration of 12 – 15s was obtained with a resolution of 3mm X 3mm 

X 3mm. Multiple landmarks like the ventricular apex, atrioventricular grooves, 

mitral valve center etc. were manually annotated on standard cardiac imaging 

planes such as L2Chamber (L2CH) and 4 chamber (4CH) views by an MRI 

technologist with more than 5 years’ of experience.  The long axis of the atrium, 

and the ventricles were drawn as shown in the figure 1. The angulation between 

these long axis lines were meticulously measured, providing us with 3 main 

shape descriptors of the heart shape, labeled here as – L2, L4 and R4. The 

distribution of these 3 shape descriptors obtained across 3 different geographies 

(India, USA and Netherlands) were analyzed with one-way ANOVA. 

Results

A total of 575 patients underwent the study and the distribution of the subjects 

across the 3 geographies are shown in Table 1.  

The spread of the Atrio ventricular angulations with the L2CH and 4CH views 

(i.e., L2, L4, R4) obtained from these different geographies are shown in the 

figure 2. One way ANOVA results indicate that there is no statistically significant 

difference in the distribution of these shape descriptors between the sites 

examined. 

Discussion

: We measured atrio ventricular angulations in 2 planes, as the shape descriptors 

of the heart to characterize the spread of heartshapes across populations. To the 

best of our knowledge, this is the first such study. We found that the distribution 

of heart-shapes is not different across different geographies, suggesting that 

automatic cardiac MR planning models trained on data obtained from specific 

regions are generalizable and hence applicable across different geographies. One 

of the key limitations of this study is that the number of patient data available 

from the different geographies are different. We believe that this may partially 

explain the variations seen. Another limitation is that we have not yet included 

heart size differences governed by the body-mass-index of the patient in this 

study. However, it can be noted the heart shapes typically play more important 

role than the size in AI based feature segmentations. 

Conclusion

The data obtained in this initial study suggests that the heart shapes, as described 

by the atrio ventricular angulations, follow similar distribution across the 

geographies. This indicates that automatic or semi-automatic models used for 

CMR planning can generalize. Further studies with more patients, specific 

models and additional regions are needed. 
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Introduction

Diffusion MRI (dMRI) is a non-invasive technique used to study the brain’s 

white matter, crucial for diagnosing mental diseases and surgical planning. 

Higher magnetic field strengths, such as 7T, enhance the resolution and clarity of 

fiber tract imaging but are expensive. This study introduces a novel CNN-based 

method to simulate 7T dMRI from 3T data, enabling cost-effective alternatives. 

The proposed model transforms 3T data into high-resolution 7T data and 

reconstructs multi-shell, multi-tissue fiber orientation distributions (MSMT 

fODFs) from single-shell data.

Methods

We present TRGANet, a CNN-based architecture that uses a Trapezoidal Rule 

(TR) for ODE solver optimization and a Graph Attention Layer. The network is 

trained to perform two tasks: transforming 3T to 7T spherical harmonics 

coefficients (SHC) and reconstructing 7T MSMT fODFs from 3T single-shell 

data. The model is optimized with L1 and total variation losses. Validation was 

carried out using the Human Connectome Project (HCP) dataset.

Results

Our model demonstrated strong performance in transforming 3T data into 7T 

SHC and MSMT fODFs. The evaluation metrics, such as %RMSE and SHC 

coefficients, showed improvements over existing methods, particularly in terms 

of sharper and more anatomically accurate results. The reconstructed images and 

fiber tracts reflected higher clarity and precision compared to previous 

approaches.

Discussion

The CNN-based framework, enhanced by the Trapezoidal Rule and graph 

attention mechanism, provides an effective solution for simulating high-

resolution 7T dMRI from standard 3T data. By learning the complex relationship 

between lower and higher field strength data, our method offers an innovative 

approach to improving dMRI quality without requiring expensive 7T equipment. 

The use of ODE solver-based learning also significantly enhances model 

accuracy and robustness.

Conclusion

The proposed TRGANet model successfully transforms 3T dMRI data into high-

quality 7T images, demonstrating its potential as a cost-effective alternative for 

clinical and research applications. The combination of the Trapezoidal Rule and 

graph attention in our framework provides a promising approach to enhance 

dMRI image quality, making it a viable solution for advancing neuroimaging 

without the need for 7T scanners.
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Deciphering Cognitive and Neuro-Metabolic Dysfunctions in Alzheimer’s Disease Progression: Evidence from the 5xFAD Model
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Introduction

Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized 

by amyloid-beta (Aβ) plaque accumulation, and neurofibrillary tangles leading to 

a progressive cognitive decline [1]. The 5xFAD mouse model, which harbors 

mutations in APP and PSEN1 genes, recapitulates the aggressive 

pathophysiology of familial AD [2]. This study quantitatively evaluated age-

dependent alterations in amyloid pathology, and brain energy metabolism in 

5xFAD mice with the progress of AD. Methods

Biomarkers related to brain energy metabolism, antioxidants, and 

neuroinflammatory cytokines are expected to be dysregulated in response to the 

severity and duration of hypoxia [3]. Blood samples from neonates are collected 

at 1-, 6-, and 48-hours post-birth from multiple hospitals across different regions 

of Odisha, followed by plasma isolation for metabolic profiling using a 700 MHz 

NMR spectrometer. Volumetric segmentation of infant brain MRI images was 

performed using the IFS and iBITS pipelines to analyze volumetric differences 

between HIE and healthy neonatal brains.

Methods

  5xFAD male mice of age 3, 6, and 12 months were used in the study. Cognitive 

performance was assessed using the Morris Water Maze test [3]. Aβ levels were 

measured in the cerebral cortex and hippocampus using Enzyme Linked Immuno 

Sorbent Assay (ELISA) and immunohistochemistry (IHC) [4]. For metabolic 

measurement, mice were anesthetized using urethane (1.5 mg/kg, intraperitoneal), 

and infused with [1,6-13C2]glucose or [2-13C]acetate through the lateral tail vein 

[5]. The brain metabolism was arrested using a focused beam microwave 

irradiation (3 kW, 1.2 s) at a predefined time. The concentration and 13C labeling 

of metabolites were measured in 1H-[13C]-NMR spectra of extracts recorded at 

600 MHz Bruker Avance III NMR spectrometer [6]. The cerebral metabolic rate 

of glucose oxidation (CMRGlc(ox)) in glutamatergic and GABAergic neurons and 

cerebral metabolic rate of acetate oxidation (CMRAce(ox))  was calculated in the 

cerebral cortex and hippocampus regions [7]. The statistical significance was 

evaluated by Student's t-test using GraphPad Prism 8.0. All data are presented as 

Mean±SD.

Results

5xFAD mice exhibited significant (p<0.01) memory impairment, with increased 

escape latency observed at 6 months (56.7s±23.8 s, n=) compared to age-matched 

wild-type (WT) controls (29.5s±18.3s) which worsened further at 12 months 

(71.5s±21.2 s vs 36.1s±13.2 s) (Fig.1). Soluble Aβ42 and Aβ40, and amyloid 

plaque burden were observed as early as 3 months in 5xFAD mice and increased 

significantly (p<0.01) with the progress of age. Representative 1H-[13C]-NMR 

spectrum from the cerebral cortex of 5xFAD mice is shown in Fig 1.  The 

concentrations of different 13C labeled metabolites like GluC4 (p<0.03), GABAC2. 

(p<0.05), and AspC3 (p<0.03) reduced significantly in the cerebral cortex and 

hippocampus of 5xFAD mice at 3 months with further progressive declines up to 

12 months. There was a significant reduction in the CMRGlc(ox) in glutamatergic 

and GABAergic neurons in both brain regions in 5xFAD mice at all ages when 

compared with age matched  WT mice. The reduction in glucose oxidation rates 

was more pronounced in 12 months, with glutamatergic and GABAergic neurons 

showing a decline of 27% (p=0.009) and 33% (p=0.005), respectively, in the 

cerebral cortex and 37% (p=0.004) and 39% (p=0.001), respectively, in the 

hippocampus. In contrast, the CMRAce(ox) was significantly increased in the 

cerebral cortex (p=0.011) and hippocampus (p=0.011) of 12-month-old 5xFAD 

mice compared to WT mice, indicating enhanced glial activity and 

neuroinflammatory processes.

Discussion

This study reveals significant age-dependent alterations in cognitive functions 

and neurometabolic activity in the 5xFAD mouse model of AD. The marked 

decrease in 13C-labeled metabolites in 5xFAD mice starting at 3 months and 

continuing till 12 months highlights early disruptions in excitatory and inhibitory 

neurotransmission. Moreover, the reduced glucose oxidation in glutamatergic and 

GABAergic neurons suggests that compromised energy production may be a key 

factor contributing to the synaptic dysfunction observed in AD. The progressive 

deficits in neurometabolism correlate with the Aβ-levels and cognitive decline 

observed in the 5xFAD mice, reinforcing that metabolic dysregulation plays a 

central role in AD pathophysiology. Additionally, the observed increases in 

acetate metabolism at later stages point to glial activation and neuroinflammation, 

which have been implicated in the progression of  AD.

Conclusion

This study demonstrates that the early deficits in energy metabolism contribute to 

cognitive decline, while later-stage neuroinflammation, reflected in increased 

acetate metabolism, further exacerbates disease progression. Together, these 

results suggest that targeting neuronal metabolism, and its interplay with glial 

cells may offer novel therapeutic avenues for early intervention in AD.
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Introduction

To build a machine learning based model to identify tumor 

type, based on the tumor’s ones( necrosis, edema and tumor 

enhancing area) using quantitative radiomic feature using a 

contrast enhancing t1-weighted MRI image data set.

Methods

We used a pre-operative CEMRI dataset from patients with 

proven primary tumor (n = 27) and metastatic tumor (n = 22) 

to calculate radiomic features on the preprocessed and 

segmented tumor masks, followed by an optimal feature 

selection and multiclass classification. On both unimodal 

and multimodal feature sets, the performance of three 

classifiers was evaluated, and the most discriminative 

radiomic characteristics involved in the categorization of 

primary and metastatic subtypes depending on the zone were 

obtained.

Results

Multimodal characteristics outperformed unimodal features 

in differentiating edema of the primary tumor from other 

zones, with an accuracy of 55 percent on test data and over 

84 percent on cross validation, as well as an overall 

specificity of over 57 percent. Among the unimodal feature 

sets, those obtained from Zone-1 (necrosis) performed 

exceptionally well in identifying all three tumor Zones. with 

a test data accuracy of 77 percent and a cross validation 

accuracy of over 84 percent, and an overall specificity of 

over 77 percent.

Conclusion

This study shows how a radiomics-based Contrast-Enhanced 

MRI can reliably distinguish between primary and metastatic 

tumor zones that appear identical otherwise.

Keywords

radiomics, IDH-wild-type, IDH1 negative, classification, 

GBM, multiple lesions, solitary lesions, Metastatic tumor, 

glioblastoma multiforme, MRI

Differentiating a primary CNS lesion from a metastatic brain lesion: A radiomics study
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Introduction

We aim to determine the feasibility of MR diffusion tensor 

imaging (DTI) at 3T on pediatric kidney transplant 

recipients, compare transplanted kidneys quantitative 

diffusion values to otherwise healthy control kidneys, and 

correlate DTI values with allograft histopathology and 

function.

Methods

In this NIH-funded prospective study, Imaging Modalities of 

Pediatric Assessments of Kidney Transplants (IMPAKT), 

pediatric kidney transplant recipients (referred for clinical 

allograft biopsies) and healthy controls underwent MRI to 

obtain DTI-derived metrics (fractional anisotropy [FA] and 

track length) of the kidney cortex from February 2020 to 

October 2023 in a single pediatric center. DTI was 

performed with 2 b-values and 20 noncollinear directions. 

DTI-derived metrics were compared between the transplant 

recipients (with and without rejection and/or chronic 

damage), and healthy controls using two-sample t-test or 

Wilcoxon rank-sum test.

Results

Fifteen kidney transplant recipients (4F/11M, median age 16 

years, IQR 13-18 years) and 30 control kidneys from 15 

healthy controls (9F/6M, median age 15 years, IQR 12-22 

years) were evaluated. With our imaging protocol, DTI was 

feasible on kidney allografts and healthy controls. A 

statistically significant difference in FA values was observed 

between allografts (median [IQR]: 0.25 [0.25-0.28]) and 

controls (0.28 [0.27-0.33], p value = 0.003). A difference was 

also observed for track length between allografts (mean: 
19.36 ± 5.21) and controls (12.80 ± 3.34, p-value < 0.001). 

There were no differences in FA or track length between 

allografts with and without rejection, and/or with chronic 

damage index score of 2+ vs. those with a score < 2.

Discussion

: In this pilot of the IMPAKT study we determined that 

prospective MR imaging performed prior to clinical biopsies 

among pediatric kidney transplant recipients is feasible with 

a success rate of 100% of high-quality images obtained for 

analysis in 15 kidney transplant recipients, recruitment 

remains ongoing. When comparing DTI parameters between 

pediatric kidney allografts (median donor aged 31 years) and 

healthy controls (median age 15 (IQR,12:22), we found a 

significant difference in the FA values, with lower values in 

kidney allografts (0.26 ± 0.06) than in control kidneys (0.32 

± 0.09). Our findings suggest that kidney allografts result in 

loss of coherent normal orientations resulting in multi-

directional water diffusion and, hence, relatively low FA 

values. For MR-DTI of the kidney to be used for clinical 

decision making, the technique needs to be consistent and 

diffusion metrics need to be reliably obtained. In our study, 

DTI metrics (track length, ADC and FA) were obtained from 

kidneys on every subject and significant differences in track 

length and FA were observed between native and 

transplanted kidneys. The superimposed DTI fiber 

tractography over clinical MR images allows clinicians to 

have a better understanding of the additional information 

provided using DTI which cannot be obtained with 

conventional MR images. Our study had limitations, mainly 

those of the relatively small sample size and the unequal 

gender distribution. However, our main objective was to test 

feasibility pilot of DTI on patients with kidney transplant 

and even with a relatively small sample size, we were able to 

show some statistically significant differences. Next, the 

underlying pathologic conditions that led to impaired kidney 

function were heterogeneous. Thus, the potential for DTI to 

differentiate between pathologic conditions (e.g., acute 

rejection, acute tubular necrosis) cannot be derived from our 

results.

Conclusion

Our study proved clinical feasibility of DTI in pediatric 

kidney transplants. DTI of the kidney cortex shows 

significantly different FA values between transplanted and 

control kidneys. These results demonstrate the feasibility of 

DTI-metrics in pediatric kidney allografts and healthy 

controls. 

Diffusion Tensor Imaging in Pediatric Kidney Transplants.
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Introduction

Comparative Analysis of Automatics and 

Semi-Automatic of Artifacts Identification 

and removal to identify epilepsy network 

using RS-fMRI Studies.

Methods

128 epilepsy patients with MTS, Multiple 

foci, FCD, tumor, and gliosis, etc. underwent 

rs-fMRI study. Their rs-fMRI data were 

analyzed with the ICA analysis in FMRIB’s 

Software Library (FSL). Different biological 

networks and non-biological networks and 

other artifactual networks were studied using 

ICA analysis and identification was done 

using two different methodologies, one is the 

Automated ICA cleaning approach using 

FMRIB’s ICA based X noisefier (FIX) and 

another one is Semi-automatic approach 

called visual correlation method developed in 

house.

Results

ICA was generated from all the RS-fMRI 

images and labelling was done using FSL-

FIX and semi-automatic approach and 

accuracy of both approaches was correlated . 

After observing the result of the approach, 

the semiautomatic correlation approach is a 

more accurate and efficient method for the 

identification and removal of artifacts than 

the automatic approach (FSL-FIX).

Conclusion

Automated ICA-based cleaning approach, 

FIX is using machine learning for identifying 

the artifacts and removal of them, but the 

semi-automatic approach or correlation 

method identifies artifacts based on 

correlation. This study concludes that the 

correlation-based method is more accurate 

than the automated ICA-based cleaning 

approach to identify epilepsy networks as the 

automatic classifier was identifying it as 

noise and certain large scale networks were 

also misclassified as noise in a pathological 

condition such as epilepsy

Does Resting fMRI have the potential of EEG to pick up epilepsy network: An exploratory methodology study
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Deep Learning-Based Framework for Automated Stroke Detection Using DWI and ADC MRI Sequences
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Introduction

Stroke involves a rapid decline in brain function caused by a disruption in blood 

supply to the brain. Ischemic strokes accounts for nearly 85% of all stroke cases 

[1]. Diffusion-weighted-imaging (DWI) is widely used to identify the ischemic 

core region. DWI images with high b-value (e.g., b=1000 s/mm2) and apparent-

diffusion-coefficient (ADC) maps have been used to identify and differentiate 

various tissue regions within the stroke-affected area. There is a need for fast and 

automated method which can assist radiologists in achieving objective assessment 

of stroke, including identification of potential stroke affected slices. The current 

study aims to develop a fully automated framework for identification of the 

stroke affected slices using DWI and ADC maps.

Methods

MRI data from Ischemic Stroke Lesion Segmentation 2022 (ISLES22) challenge 

was used for the current study [2]. The dataset consisted of MRI data of 151 

patients with previously diagnosed or suspected stroke along with labelled masks 

of stroke lesion. MRI acquisition sequences included FLAIR and DWI (b = 1000 

s/mm2) images and ADC maps. All the images provided in the ISLES22 

challenge were already preprocessed. The dataset was split into training, 

validation, and testing sets in the ratio of 70:10:20. The image data was divided 

into three groups: DWI images (group-1), ADC images (group-2), and the 

combination of DWI and ADC (group-3). Images for group-3 were generated by 

having DWI in one channel and ADC in another channel of the same image.

For stroke detection, three classification networks MobileNet-v2, Inception-v3, 

and Xception were employed as the base models. On-the-fly affine data 

augmentation were carried out to reduce model overfitting. To evaluate the 

overall performance of the classifier’s accuracy, precision, and recall were 

computed. All networks were re-trained on our dataset for 50 epochs using Adam 

optimizer with an initial learning rate 0.0001. The learning rate dropped by 0.1 

every five epochs. The batch size and L2-regularization were set at 4 and 

0.00001, respectively.

Results

The results of stroke detection corresponding to different image sequences are 

presented in Table 1. For DWI, Inception-v3 achieves the highest accuracy 

(0.95), precision (0.95), and recall (0.79) on validation data, while Xception 

achieves the highest precision (0.96) and recall (0.78) on the test set. For ADC, 

Inception-v3 performs best overall, particularly on recall with a test recall of 0.38. 

Combining DWI and ADC image sequence improves performance across all 

metrics, with Inception-v3 achieving the best accuracy (0.96) and recall (0.80) on 

the validation set and the highest test precision (0.96). Notably, all networks 

exhibit poor recall on ADC maps. Xception provides a good balance between 

accuracy and recall but has lower precision compared to the other models.

Discussion 

The current study evaluated the performance of a DL framework for stroke 

identification on DWI and ADC maps. The findings highlight that integrating the 

two image sequences improves classification accuracy. DWI and ADC images 

provide information on the tissue microstructure and are highly sensitive to 

diffusion of the water molecules, which helps identify the ischemic core. This is a 

preliminary study which needs to be further validated on large data from multi-

centers.

Conclusion: The current study suggests that a deep learning framework trained 

on the combination of DWI and ADC images can identify the stroke affected 

image slices with a mean classification accuracy of 0.92.
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Figure 1 Receiver Operating Characteristic (ROC) curves  for DWI (in blue), ADC (in orange), and 
DWI+ADC (in yellow) image sequences for the test dataset.

Networks Dataset

DWI ADC DWI+ADC

ACC PR RE ACC PR RE ACC PR RE

MobileNet-v2

Validation 0.94 0.87 0.71 0.86 0.71 0.15 0.94 0.96 0.65

Test 0.90 0.93 0.71 0.77 0.90 0.22 0.90 0.96 0.68

Inception-v3

Validation 0.95 0.95 0.75 0.86 0.71 0.21 0.96 0.92 0.80

Test 0.93 0.96 0.79 0.79 0.88 0.31 0.92 0.96 0.76

Xception

Validation 0.94 0.84 0.78 0.86 0.60 0.26 0.95 0.88 0.78

Test 0.93 0.96 0.78 0.80 0.83 0.38 0.93 0.94 0.78

Table 1 Performance Comparison of MobileNet-v2, Inception-v3, and Xception on DWI, ADC, and 
Combined DWI+ADC Modalities Using Validation and Test  Datasets



Design, Development and Performance Evaluation of Ultra Flexible Multi-Channel Surface Receive Coil for 1.5T MRI System
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INTRODUCTION

MRI (magnetic resonance imaging) is a non-invasive diagnostic technique used 

in medical diagnosis to create detailed images of the body parts.  The design and 

performance of radiofrequency coils, particularly surface receive coils, have a 

considerable impact on the quality of MRI pictures [1]. A 4-channel ultra-

flexible surface receiving coil designed for a 1.5T MRI system was developed 

and evaluated. The coil is engineered to fit uneven anatomical surfaces, 

resulting in maximum signal sensitivity. The selection of flexible materials and 

a properly planned coil layout allows for great flexibility while maintaining RF 

performance.  The coil's performance was evaluated by imaging a phantom and 

wrapping it around it. The results highlight the potential for enhanced signal 

reception and adaptability in clinical and research applications, particularly 

when imaging anatomically complicated areas. [2].

 METHODS

A 4-channel flexible surface receiving coil was developed using a 0.254 mm 

thick FR-4 substrate since it is cost-effective and widely available. To achieve 

optimal signal reception, each coil channel's impedance was optimized to 50 Ω.

The coil was tuned to 63.87 MHz, the Larmor frequency for a 1.5T MRI system, 

using a Vector Network Analyzer and a decoupled probe. Active detuning was 

tested with an external DC bias voltage, and the S21 parameter was monitored; 

the results are reported in table 1. The coil's performance was assessed by 

comparing it to a single-channel loop coil and axial slices were acquired using a 

single-channel coil and a four-channel flexible coil. The Signal-to-Noise Ratio 

(SNR) was measured using software created by the CDAC, Trivandrum as part 

of the iMRI project.

RESULT

The performance evaluation demonstrated a significant improvement in SNR 

when using the 4-channel flexible coil compared to the single-channel loop 

coil. Table 2 presents a summary of the SNR results.

CONCLUSION

In SNR studies, the 4-channel ultra-flexible surface receive coil performed 

much better than the single-channel loop coil, confirming its improved 

performance for 1.5T MRI systems. Its versatility and use of a cost-effective 

FR-4 substrate make it a viable option for high-quality imaging in anatomically 

difficult areas.

DISCUSSION

The higher SNR demonstrates the benefits of multi-channel and anatomically 

adaptable designs. The FR-4 substrate ensured cost effectiveness and 

mechanical adaptability, while precise tuning and detuning resulted in adequate 

channel decoupling and impedance matching.  Future research could look into 

higher channel counts and testing on human phantoms to broaden its clinical 

relevance. This coil is a significant step forward in improving MRI imaging 

quality and adaptability.

Scientist, Medical System Divison, SAMEER, Mumbai, India 
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Channel Tune-S21 (dB) Active Detune- S21 (dB) Difference (dB)

CH1 -22.29 -55.28 32.99

CH2 -21.48 -50.85 29.37

CH3 -21.40 -53.47 32.07

CH4 -21.54 -55.27 33.73

Coil Type SNR 

(Mean)

SNR (NEMA)

Single-Channel  loop Coil (Rigid) 21.5083 36.069

4-Channel  Ultra- Flexible Surface Receive 

Coil

28.8929 92.0515

Figure 1. Left: MRI scan setup with single-channel surface receive loop coil  (rigid) for phantom imaging; 
Right: developed ultra-flexible 4-channel receive coil wrapped around phantom

Figure 2. SNR measurement with a single-channel loop coil: axial sl ice of a phantom

Figure 3. SNR measurement with 4-channel flexible surface receive coil : axial slice of a phantom



Designing an electromagnetic field generator for intraoperative real time tracking in image guided interventions
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Introduction

Magnetic resonance imaging (MRI) provides superior soft tissue contrast which is 

beneficial in detecting lesions in the brain, spinal cord, liver, and musculoskeletal 

system. This advantage makes MRI a valuable tool for image-guided 

interventions, such as biopsies, ablations, and catheter-based procedures [1]. 

These procedures require high precision and dexterity due to their minimally 

invasive nature. The development of such skills requires intricate training, that 

maybe difficult to achieve in standard clinical teaching settings due to ethical 

considerations and resource constraints [2]. Simulation-based training has the 

potential to overcome these concerns with real time intraoperative tracking and 

navigation of surgical instruments [3]. Among the various real time tracking 

techniques, electromagnetic (EM) sensor-based tracking stands out for its high 

spatial accuracy, and ability to function without a direct line of sight, making it 

particularly well-suited for minimally invasive procedures [4]. This study aims to 

design and simulate an EM field generator circuit for real-time instrument 

tracking, that can be integrated in a simulator for training in image-guided 

interventions.

Methods

The electronics design was adapted from an open-source framework, 

incorporating modifications to improve functionality and ensure system 

compatibility. A key aspect was the planar field generator, consisting of eight 

independent coils, each with its dedicated circuitry. The circuit for each coil 

included three main components: a signal generator, a current amplifier, and a 

field generator coil. The signal generator was assembled on a perforated board 

using a Teensy 4.0 microcontroller and an AD9833 function generator. This setup 

produced the desired waveform via serial port communication, and the voltage 

magnitude of the generated signal was measured. The current amplifier circuit 

was designed using KiCAD 8.0 and featured a three-stage amplification. It 

included a TL081 op-amp, an LM7171 high-speed op-amp, and an LMH6321 

current booster, providing the necessary drive capability (as shown in Figure 1). 

SPICE simulation of the circuit was performed to calculate the expected current 

output based on the measured voltage. This ensured optimal performance before 

hardware implementation. The field generator coil was designed as square planar 

windings on a PCB, following specifications derived from an open-source 

framework. The windings consisted of 25 turns: 13 on one side and 12 on the 

other. Each turn had a 0.5 mm width, with 0.25 mm spacing. The outermost turn 

measured 7 cm in length. To evaluate the coil's effectiveness, the magnetic field 

vectors were computed at equally spaced grid points using the Biot-Savart law 

and filament current model, based on the simulated current output. The vectors 

were plotted via a MATLAB simulation to generate a 3D magnetic field map.

Results

 The output of the first two amplification stages was visualized and quantified 

using the PicoScope 2205A. The Teensy microcontroller controlled eight function 

generators, each operating with a frequency step size of 2 kHz. The signal 

generator produced an RMS voltage of 620 mV and an RMS current of 63 µA. 

The current amplifier circuit boosted the output current to 230 mA, while the 

voltage was regulated to approximately 5 V. Magnetic field intensity plots 

obtained from a single coil revealed a trapezoidal distribution, with the field 

strength being highest near the coil and gradually decreasing with distance. At a 

distance of 1 cm from the coil, the field intensity measured 25 Gauss, whereas at 

10 cm, it dropped to less than 2 Gauss. The 3D field map visualization provided 

insights into the spatial distribution of the magnetic field (as shown in figure 2).

Discussion and Conclusion

The designed EM field generator is successfully able to generate a magnetic field 

suitable for tracking applications. The square coils were chosen as magnetic field 

sources due to their ability to simplify PCB layout and fabrication. Implementing 

the coils on a PCB allows precise positioning of each track, enabling accurate 

prediction of the generated magnetic fields with analytical methods. The voltage 

induced in the receiver coil due to generated field can be demodulated and scaled 

to determine the magnetic flux contribution from each coil. Once the flux has 

been calculated, the position and orientation can be estimated using an iterative 

nonlinear least squares algorithm. Once the tracking module has been fully 

integrated, it can be used to train radiologists in performing MRI, ultrasonography 

(USG), or computed tomography (CT) guided interventions via simulation-based 

training. As a training simulator, such a system would enable precise virtual 

positioning and orientation of the needle within the imaging environment, 

allowing the trainee to visualize the trajectory of the needle and improve their 

hand-eye coordination. Beyond training applications, the module can also 

facilitate real time tracking of intervention instruments, especially in USG guided 

interventions. While their application in MRI systems is limited because of the to 

the constraints of EM tracking, such modules can be an asset in MRI/USG fusion 

imaging based interventions where the EM tracking can provide accurate 

guidance of the needle to the lesions that are visible only via MRI, but the 

procedure needs to be performed under USG guidance [6]. 
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Introduction

Traumatic Brain Injury (TBI) caused by external forces, leading to structural and 

functional damage in the brain. Diffusion Tensor Imaging (DTI) is an advanced 

MRI technique that measures the diffusion of water molecules within brain tissue. 

It provides critical insights into white matter integrity using metrics such as: 

Apparent Diffusion Coefficient (ADC), Fractional Anisotropy (FA) and Radial 

Diffusivity [1]. ASL parameters include: Time to Peak (TTP), Mean Transit Time 

(MTT), and Cerebral Blood Volume (CBV) [2]. DTI detects microstructural 

damage (axonal injury, demyelination) caused by TBI, while ASL assesses 

perfusion deficits (reduced blood flow and vascular dysfunction). DTI and ASL 

analysis helped in early TBI diagnosis, prognosis, and treatment monitoring. This 

integrated approach enhances clinical understanding of TBI severity, progression, 

and recovery.

Methods

Image Acquisition was performed with Philips 3T MRI Scanner. DTI image 

acquisition protocol: Gradient Directions: 30–64 directions, b-values: 0 and 

1000s/mm², Voxel Size: 2 mm³ isotropic, Slice Thickness: 2 mm with no gap, 

Repetition Time (TR): ~8000–10000 ms, Echo Time (TE): ~90–100 ms. Philips 

MRI viewer used to draw Region of Interests (ROIs) in DWI, DTI, and ASL 

images to obtain ADC, FA, RD, TTP, MTT, and CBV values. T1-weighted and 

T2-weighted images were seen for accurate anatomical localization of Injury. We 

manually drawn 3 ROIs in Injury region and 3 ROIs in normal area and obtained 

mean values of ADC, FA, RD, and values of TTP, MTT, CBV from each ROI.

Results

The ROIs (green circles) in ADC map (fig.1A) and CBV map (fig.2B). ADC, FA, 

and RD, reveals differences between TBI and control regions (fig.1D). The mean 

ADC values were higher in TBI regions compared to control regions (1.9±0.7 vs 

1.5±0.5 (10-3mm2/sec)), mean FA values were lower in TBI regions (0.7±0.2 vs 

0.9±0.3) and mean RD values were elevated in TBI regions (1.6±0.6 vs 1±0.3). 

Further, ASL parameters TTP, and CBV were elevated in TBI regions (602±335 

vs 434±291), while MTT showed slight increment. Fig.2A shows mean ADC, FA, 

RD values TBI and control regions for each patient. The ADC and RD are elevated 

in injury regions in all the patients. On the other hand, the FA is reduced in injury 

regions in all the patients. The TTP is elevated in injury regions in 7 out of 10 

patients. The CBV shows elevated levels in injury region in half of the patients. 

MTT shows elevated levels in injury regions of 6 patients.

Discussion

ADC and RD exhibit a strong positive correlation, indicating that an increase in 

extracellular diffusion is associated with structural disruption in injury regions. FA 

is negatively correlated with both ADC and RD, giving idea that reduced 

anisotropy is linked to increased isotropic diffusion in damaged tissues. In the 

injury group, the ADC and RD are both high, suggesting that injury severity 

directly affects diffusion properties. Elevated CBV levels suggests increased blood 

volume in injury and low MTT suggest slow blood flow rate in both injury and 

control regions. These findings suggests a relation between diffusion and perfusion 

metrics in characterizing white matter integrity loss in TBI patients.

Conclusion

The analysis of diffusion and perfusion MRI parameters highlights significant 

differences between injury and control regions in TBI patients. ADC, FA, RD 

provides insights into white matter integrity, while ASL derived parameters (TTP, 

MTT, CBV) reveal cerebral perfusion deficits. The correlations observed between 

these parameters further strengthen the interdependence of these imaging 

biomarkers. These findings support the use of multi-parametric MRI in TBI 

assessment, aiding in early diagnosis, prognosis, and treatment planning.
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Introduction

India is said to have one of the fastest-growing obesity rates in the world. Obesity 

is not only a risk factor for other metabolic diseases but also is a threat to cerebral 

complications [1]. It has been reported earlier that obesity is associated with 

alterations in brain volumes in the Western population [2]. However, obesity as a 

disease has a pathophysiological dependence on the accretion of fat, and Indian 

ethnicity is more vulnerable to fat accumulation and abdominal obesity [3]. 

Among Indian men, obesity has increased to 22.9% from 9.3% within a span of 15 

years [4], whereas there have been fewer attempts to understand the impact of 

obesity on the brains of Indian men. This study aims to evaluate the volumetric 

changes in the brain due to obesity among Indian middle-aged men in urban 

settings.

Methods

A case-control study was designed with a sample size of n=23 (obese = 11). The 

volunteers meeting the inclusion criteria were categorized into obese and non-

obese cohorts based on waist circumference, as per the international criteria of the 

World Health Organization. Cohorts were formed after scrutinizing for MRI 

contraindications and disease history. The anthropometric measurements such as 

body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) 

were recorded along with body composition analysis by bioelectrical impedance 

analysis (BIA). The volunteers were scanned for a T1-weighted brain MRI in a 3T 

MRI scanner (Philips Healthcare, Ingenia 3.0 T) with the turbo field echo (TFE) 

sequence and the parameters: TE = 3.0ms, TR = 6.4ms, FOV = 210mm x 210mm 

x 180mm, voxel size = 1mm x 1mm x 1.2 mm, matrix = 210 x 210, slices = 150, 

gap = 0mm, slice thickness = 1.2mm and flip angle = 8degrees. The images were 

converted to NIfTI format from DICOM by MRIcron (RRID:SCR002403), pre-

processed, and analyzed in FSL (FMRIB software library). The skull stripping was 

done by FSL-BET tool. Next, to generate the partial volume estimation (PVE) 

maps of white matter, grey matter (Figure 1, 2), and cerebrospinal fluid, and 

volume estimation of each segmented class, the FSL-FAST tool was used. To 

normalize the volumes with skull size, the SIENAX tool was applied. FSL-FIRST 

was used to segment (Figure 3) and calculate the volume of the left hippocampus. 

The statistical analyses were carried out in SPSS ver. 22 (IBM Corp, NY, USA). 

Independent T-Test was applied to compare the means of the volumetric 

parameters of obese and non-obese cohorts.

Results

The mean BMI and WC in the obese group were 30.14±3.98 kg/m2 and 

99.89±5.28 cm, respectively (Table 1). The obese group had shown a significant 

decrease in peripheral grey matter volume (p=0.014), total grey matter volume 

(p=0.020) and total brain volume (p=0.027). The significant differences were 

observed after normalizing the volumes with the skull size by SIENAX package 

(Table 2).

Discussion

This study reports significant reduction in brain volumes in obese individuals with 

no other morbidities. These findings corroborate well with earlier findings in the 

Western population, indicating the risks of developing the cerebral consequences 

of obesity [5], [6]. Reduced grey matter volume is associated to cognitive decline 

and neurodegenerative diseases like Alzheimer’s Disease and Parkinson’s disease 

[7]. Reduction in total brain volume is a classical depiction of brain atrophy [8]. 

The brain function and cognition is severely impacted in presence of brain atrophy 

[9]. The left hippocampus showed no significant difference among the cohorts as 

reported in earlier literature [10], [11].  This may indicate the limitation of small 

sample size of the current study.

Conclusion

This is the first study in India that delved in understanding the complications in the 

brain due to obesity among middle aged Indian men. Even after considering the 

limitation of small sample size of this study, the grey matter volumes (total and 

peripheral) and total brain volume were significantly low in obese group. This 

reinforces the gravity of obesity as a disease beyond the established metabolic 

complications. Early intervention to manage obesity may help in ceasing the 

detrimental cerebral consequences.
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Parameters mean±SD

Obese (n=11) Non-obese (n=12)

Age (years ) 47.36±4.8 45.75±4.3

Weight (Kg) 85.44±9.3 66.38±6.8

BMI (Kg/m
2
) 30.14±3.98 23.24±2.2

Waist circumference (cm) 99.89±5.28 83.09±4.8

Waist to hip ratio 0.96±0.03 0.83±0.4

Fat percentage 29.80±3.71 21.72±2.6

Parameters (tools) mean±SD (cm
3
) p-value

#

Obese (n=11) Non-obese (n=12)

Grey matter volume (FSL-FAST) 581.60±42.37 577.09±41.86 0.800

White matter volume (FSL-FAST) 517.65±15.64 513.59±10.95 0.834

Total brain volume (FSL-FAST) 1099.26±92.08 1090.68±76.73 0.812

Peripheral grey matter volume (SIENAX) 537.60±22.62 563.26±23.33 0.014*

Total grey matter volume (SIENAX) 631.31±22.19 655.25±23.59 0.020*

Total white matter volume (SIENAX) 651.52±24.37 662.40±14.69 0.218

Total brain volume (SIENAX) 1282.84±39.79 1317.66±27.61 0.027*

Volume of left hippocampus (FSL-FIRST) 3.14±0.56 2.97±0.20 0.351

Figure 1 PVE map of grey matter segmented by FSL-FAST Figure 2: PVE map of white matter segmented by FSL-FAST

Figure 3: Segmentat ion of left hippocampus by FSL-FIRST
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Introduction

Classifying Alzheimer’s disease using high-dimensional 3D 

structural MRI (sMRI) scans is a challenging task due to the 

data-intensive nature and complexity of the models required. 

This work addresses this challenge by proposing a Vision 

Transformer (ViT)-based architecture that leverages the high 

inductive bias of CNNs as a guiding module for transformers. 

Additionally, we introduce efficient strategies to mitigate the 

quadratic complexity of transformers.

Methods

A. Architecture

We propose a multi-stage, multi-scale ViT backbone with 

hierarchical downsampling using 3D CNNs across three 

stages for multi-resolution feature extraction. To mitigate the 

quadratic complexity of transformers, each stage incorporates 

a patch selector module using factorized convolutions, 

retaining only the top-k informative patches (S1:1500, 

S2:1000, S3:150) for Key and Value generation, reducing 

computational cost. Attention with top-k patches is computed 

as:

B. Experiments

The architecture was trained and evaluated on three datasets: 

ADNI, OASIS, and AIBL. From ADNI, we collected 3802 

scans including Alzheimer’s Disease (AD), Mild Cognitive 

Impairment (MCI), and Cognitively Normal (CN) subjects, 

along with 1261 scans from OASIS and 1097 scans from 

AIBL. For ADNI, both binary (AD vs. CN) and multi-class 

(AD vs. MCI vs. CN) classification tasks were performed, 

while only binary classification was conducted for OASIS 

and AIBL to ensure robust evaluation across diverse datasets 

and tasks. We employed an 80:20 train-test split for binary 

classification and a 70:10:20 train-validation-test split for 

multi-class classification.

Results

 Table I shows 2-way results of our proposed model against 

SOTA and baseline model, which randomly picks top-k 

patches without a patch selector module for all 3 datasets. 

Table II shows results of 3-way classification on ADNI 

dataset.

Conclusion

This work introduces a novel framework for efficient 3D 

MRI scan processing, demonstrating robust performance and 

generalizability across three Alzheimer’s disease datasets. 

The proposed model outperforms state-of-the-art methods by 

at

least ∼3% accuracy while maintaining a lower parameter 

cost of ∼3.5M, ensuring computational efficiency.
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Introduction

Magnetic Resonance Imaging (MRI) stands as a formidable imaging technique, 

hinging on arrays of detector coils to capture faint RF signals. However, the 

presence of parasitic coupling among array elements undermines the performance 

of the imaging system, introducing significant complexity into the array design 

process. This research not only highlights a notable reduction in surface current 

through the adoption of a tailored high impedance coil structure but also 

demonstrates the enhanced adaptability and expandability inherent in this 

innovative design. Moreover, it underscores improvements in signal-to-noise 

ratio, quality factor, field of view, and specific absorption rate.

Methods

Low Impedance detector:

A low impedance coil refers to a coil or winding in an electrical circuit with a 

relatively small impedance(10Ω). Low-impedance coils (LICs) excel in efficiently 

capturing electromagnetic fields (EMF) while facilitating the flow of current. 

Consequently, this current generates a secondary radiofrequency field that 

neighboring elements can detect. The low impedance coils were fabricated as 

loops measuring 6 mm in width and almost 5 inch in diameter. On each loop, a 

single capacitor was consisting of a (Ct) 20 pF capacitor along with a variable 

capacitor placed on top for tuning purposes. Additionally, an (Cm) 8 pF fixed 

capacitor and a (Lm) 778 nH inductor were utilized for matching at the port. 

These coils were subsequently connected to low-input impedance preamplifiers. 

This concept is depicted in Figure 1(a).

High impedance detector:

In our pursuit to eradicate resonant inductive coupling among elements, we 

embarked on crafting a novel element design. This design enables the 

measurement of electromagnetic fields (EMF) without permitting current flow or 

the inadvertent induction of signals into neighboring elements. Our work 

introduces an alternative method for constructing a high-impedance coil (HIC), 

enabling tuning to various frequencies using a standard 50 Ω coaxial cable while 

maintaining a high Q-factor. This method involves integrating a lumped capacitor 

(Ct) into the gap within the outer conductor of the coaxial cable, as illustrated in 

Figure 1(b).

Results

For exploring tuning variability concerning coil geometry, the reflection 

coefficients of both the HIC and LIC were examined. As shown in Figure 

2(a),2(b),2(c), the HIC's reflection coefficient at 63.87 MHz ranged from -20.74, - 

16.79, -14.07 dB when arranged as a circle, 8×13 ellipse, and 6×15 ellipse, 

respectively. Conversely, the LIC, offering more flexibility, exhibited reflection 

coefficients of -16.58, -6.39, and -2.9 dB under the same configurations.

Discussion

Recent advancements in MRI detector arrays have shifted towards utilizing high 

impedance coils instead of low impedance coils. These high impedance coils offer 

improved flexibility and signal sensitivity, enabling parallel signal acquisition. 

Constructed from flexible coaxial cables, these coils are tuned to the desired 

frequency by adjusting parameters such as coil length, dielectric properties of the 

coaxial cable insulator, and the ratio of inner conductor to outer conductor radii. 

However, achieving this tuning dependency can be challenging, especially in MRI 

scanning where coil size is typically predetermined based on the shape and size of 

the object to be imaged. Various methods have been proposed to tune the coils 

while keeping the coil length constant, such as the use of multi-gap-multi-turn 

techniques. However, these methods often compromise mechanical flexibility. In 

this study, we present a novel approach to fabricate high impedance coils that 

allows for tuning at the desired frequency while maintaining a high Q-factor and 

SNR. This is accomplished by introducing a lumped capacitor (Ct) in the gap of 

the outer conductor of the coaxial cable, as depicted in Fig. 1(b).

Conclusion

The high-impedance detector-array exemplifies a breakthrough in MRI 

technology, offering adaptive, wearable imaging capabilities. By eliminating 

signal coupling and enhancing flexibility, the detector enables detailed imaging of 

soft- tissue biomechanics during natural movements. This innovation not only 

improves imaging quality but also expands MRI's applications, promising 

advancements in medical diagnostics and research on joint and tissue dynamics.
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Introduction

Hypoxic-Ischemic Encephalopathy (HIE) is a severe neonatal condition resulting 

from oxygen deprivation during birth, often leading to long-term neurological 

impairments. Globally, HIE affects approximately 2% of live births, with a higher 

incidence in developing countries [1]. In India, Odisha reports one of the highest 

neonatal mortality rates, with 32 deaths per 1,000 live births, of which 29.09% 

are attributed to moderate to severe perinatal asphyxia [2]. Early detection and 

timely intervention are crucial in mitigating the risk of irreversible neurological 

damage. However, no definitive quantitative early clinical marker currently exists 

to reliably determine whether a neonate has developed HIE. Diagnosis typically 

becomes apparent only at the first developmental milestone, around six months of 

age [3]. This study proposes a novel approach integrating ‘Neuroimaging and 

Blood-Based Metabolomics’ with AI models for highly precise determination of 

HIE within six hours of Birth.

Methods

Biomarkers related to brain energy metabolism, antioxidants, and 

neuroinflammatory cytokines are expected to be dysregulated in response to the 

severity and duration of hypoxia [3]. Blood samples from neonates are collected 

at 1-, 6-, and 48-hours post-birth from multiple hospitals across different regions 

of Odisha, followed by plasma isolation for metabolic profiling using a 700 MHz 

NMR spectrometer. Volumetric segmentation of infant brain MRI images was 

performed using the IFS and iBITS pipelines to analyze volumetric differences 

between HIE and healthy neonatal brains.

Results

Preliminary plasma NMR analysis revealed significantly elevated concentrations 

of lactate (3.8-fold), glutamine (1.2-fold), and creatine phosphate (1.7-fold) in 

neonates diagnosed with birth asphyxia compared to non-HIE subjects over time. 

In parallel, neuroimaging segmentation showed substantial structural changes, 

including a 10% enlargement of ventricles and a 7.7% cortex thinning in HIE-

affected neonates. These findings indicate clear differences in metabolite 

concentrations and brain structure between HIE and non-HIE subjects.

Discussion

Elevated levels of lactate, glutamine, and creatine phosphate in the plasma of 

birth asphyxiated neonates indicate significant disruptions in brain energy 

metabolism due to hypoxic-ischemic injury, reflecting a shift to anaerobic 

glycolysis and compensatory mechanisms for cellular energy balance. Concurrent 

neuroimaging analysis revealed notable structural abnormalities, including 

ventricular enlargement and cortical thinning, suggesting neuronal loss and 

cerebral atrophy. These findings highlight the potential of metabolite and imaging 

biomarkers for early HIE detection. Integrating these markers with AI-driven 

models could enhance diagnostic accuracy, enabling timely interventions and 

improving neurodevelopmental outcomes in affected neonates.

Conclusion

This study introduces a novel approach combining blood-based metabolomics, 

neuroimaging metrics, and AI-driven analysis for the early detection of HIE in 

neonates. By enabling timely interventions like Therapeutic Hypothermia (TH), 

this framework has the potential to revolutionize HIE diagnosis and improve 

neonatal outcomes, particularly in high-risk regions like Odisha.
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Figure 1: Metabolomics and Neuroimaging Alterations in Birth Asphyxiated Neonates. (A) Representative plasma NMR spectra 

highlighting signif icantly elevated levels of lactate and glutamine in bir th-asphyxiated neonates compared to healthy controls. (B) 

Longitudinal quantification of plasma metabolites, inc luding lactate, glutamine, and creatine phosphate, measured at 1, 6, and 48 hours post-

bir th, showing progressive metabolic dysregula tion in HIE subjects. (C) Neuroimaging segmenta tion illustrating white matter, gray matter, 

and cerebrospinal fluid (CSF) volume dif ferences between normal and HIE neonates. (D) Violin plots and box plots depicting signif icant 

reductions in white matter (WM) and gray matter (GM) volumes and increased CSF volume in HIE-affected neonates (*p < 0.05, **p < 

0.01).
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Introduction

MR Imaging of knee is an important non-invasive tool for the evaluation of disorders such 

as meniscal, ligamental, soft-tissue, bone and bone-marrow injuries and abnormalities[1]. 

PD-fat-sat is an essential contrast of knee MRI. Fat-saturation can be challenging at low 

field strength as water and fat are resonating in proximity of each other (74Hz at 0.5T) 
requiring longer CHESS RF pulse and sensitivity to B0 field-inhomogeneity[2]. Dixon 

based fat separation/suppression techniques are robust to B0 field-inhomogeneity, however 

they are associated with 2- or 3-fold increase in scan time[3]. An AI-based method is 

proposed in this abstract which decomposes a single FSE MRI image with shifted echo time 

into water, fat and field-inhomogeneity MR images.

Methods

Shifted echo-time MRI: Complex-phase difference between and water and fat signal 

evolves since excitation. In FSE-MRI refocusing RF pulse reverses the phase evolution 
leading to water and fat signal alignment at echo times. Like Dixon MRI, shifted echo time 

images are acquired to spread water and fat signals in the complex value plane. The fraction 

of water/fat signal in knee MRI is typically fixed over a tissue so the fat fraction image has 

abrupt changes across the tissue interfaces. In the presence of pathology, such as over bone, 

a rapidly varying fat fraction is observed. The presence of field-inhomogeneity in FSE 
image acquisition typically manifests as smoothly varying phase across the image. 

Therefore, shifted echo time MRI has information about water, fat and field inhomogeneity.

AI based water-fat-inhomogeneity separation: Single-shifted echo-time MRI was 
processed through UNet without downsampling but with dilated convolution [5,6]. Pyramid 

pooling module [7,8] is used to aggregate the information at the different dilated scales. 

Learning is constrained by deep image prior [9] based on image generation physics, 

I=W+FejejFm . Where θ is the known phase difference between the water-peak and the 

most prominent fat signal peak based on the shifted echo time value and field strength. I is 
the shifted echo-time image, W, F Fm are water, fat, and field-inhomogeneity map images, 

respectively. Retrospectively, shifted echo-time images for any arbitrary θ is generated 

using same equation. The corresponding loss function for training the AI model is, 

In-vivo Datasets: Patients for knee MR Imaging at a commercial 1.5T scanner at the 

diagnostic center were given the option to participate in the IRB-approved study at 0.5T 

research MRI scanner. 40 consecutive patients participated in this study were considered. 
Proton density fTED [4,10] was acquired in all three planes (sagittal, coronal, and axial) 

with FOV=18cm, Matrix Size:320x224, TR/TE=1674/28.1, rBW=22.7kHz, slice-

thickness/spacing=5mm/1.5mm in 4:15minutes. Each fTED dataset consists of two pairs of 

(in-phase and out-phase) shifted echo-time images. Water, fat, and field-inhomogeneity are 

estimated for each pair of images and used for AI model training and testing purposes.

Results

AI model is trained for a range of echo time shifts (leading to θ≠0. Quantitative performance 

(SSIM and PSNR) metrics of the model for estimating water and fat images are shown in 

Figure 1. The performance of the model increases rapidly with an increase in θ and then 

plateaus. Shifted echo-time image is important as a water image from non-shifted echo-time 
(in-phase) image looks similar to ground truth but is missing the bone pathology as shown 

in Figure 2. Further, qualitative assessment of the AI model of a patient with subtle bone 

edema is shown in Figure 3. Edema was visible in θ≥30o. Figure 4 shows that the input to 

the AI model at θ=30o looks similar to the in-phase MRI image. Therefore, prospective 

acquired MRI images with θ=30o can provide also provide in-phase contrast without AI 
processing. 

Review of the fTED-generated water MRI images and AI-generated water images with 

input MRI images of θ=0o, 30o and 190o was done over 10 patients not used for training by 

an experienced radiologist with over 30 years of experience in reading MRI images shows 

that AI images generated with shifted echo (θ=30o and 180o) had all the pathologies present 
in the ground truth fTED image.

Conclusion

AI-based method is shown to estimate water, fat, and field inhomogeneity images from 

single shifted echo-time knee FSE PDw MRI. The proposed method is able to exploit the 

information encoded in complex value and expected spatial variation to generate realistic 
MRI images with all the pathologies over 10 patients in the radiologist’s review. The 

proposed method can reduce the data acquisition times of the fat-suppressed/separated MRI 

images. Further work is required to understand the performance in the presence of metal 

implants, other anatomies, and other MRI contrasts.

Hongxu Yang 2 Uday Patil11,3
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Figure-1 SSIM and PSNR for different echo time shifting 
leading to different phase between water and primary fat 

signal peak.
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Figure-2 Water Image obtained from fTED and proposed AI 
method with in-phase (θ=0) and out-phase (θ=180) images. 

The bone edema pathology marked by yellow arrow in 
ground truth image.

Figure-3 Qualitat ive assessment of impact of θ on estimating in the subtle bone 
edema in the bone. Red box is drawn over the edema

Figure-4 fat suppressed MRI at 1.5T and fTED generated water MRI at 0.5T and 
AI generated water MRI at 0.5T with θ=30 as input. The simulated MRI images for 

θ=30 and acquired in-phase (θ=0) and out-phase (θ=180). Pathology is  marked by 
yellow arrows .
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Introduction

Diffusion MRI (dMRI) enables the non-invasive investigation of tissue 

microstructure by measuring water molecule diffusion within biological tissues. 

Multi-shell dMRI estimation extends traditional single-shell acquisition by 

sampling diffusion signals at multiple b-values allowing for more accurate 

modeling of complex tissue structures. While high-angular resolution diffusion 

imaging (HARDI) improves tissue characterization, it requires extensive 

sampling, leading to prolonged scan times, limiting clinical feasibility. One of the 

key advantages of multi-shell dMRI estimation is its ability to reduce acquisition 

time while preserving important microstructural information. To address this, 

deep learning-based reconstruction methods have been proposed. In this direction, 

Jha et al [1] introduced MSR-NET, a deep learning model designed to reconstruct 

dMRI volumes at b = 2000 s/mm² from data acquired at b = 1000 s/mm². MSR-

NET utilizes the spherical harmonic space using an encoder-decoder architecture 

with attention and feature modules. Similarly, Dugan et al. [2] proposed a 3D U-

NET-based model that estimates high b-value (2000 and 3000 s/mm²) dMRI 

volumes from low b-value (1000 s/mm²) data. The aim of this study is to present a 

deep learning-based reconstruction method for multi-shell dMRI estimation using 

a V-NET architecture enhanced with a Multi-Scale Attention Module (MSA). 

Methods

Our method incorporates a V-NET architecture with a MSA to enhance feature 

extraction for multi-shell diffusion MRI (dMRI) estimation. This architecture 

builds upon V-NET by incorporating dense connections, multi-scale receptive 

fields, and spatial-channel attention mechanisms to improve learning. The MSA 

module employs three parallel convolutional branches with different dilation rates 

(1, 2 and 4) to capture features at multiple receptive fields. Additionally, channel 

attention is applied through global average and max pooling. A spatial attention 

mechanism further refines the feature representation by using a 7×7 convolution 

over pooled feature maps. To further improve feature extraction, the model 

employs DenseBlocks which consist of three convolutional layers where each 

layer concatenates previous outputs to promote feature reuse and improve gradient 

flow. In the V-NET, the encoder path consists of four downsampling levels, 

where each level includes a convolutional layer followed by a DenseBlock. The 

deepest layer or bottleneck contains a DenseBlock with the highest number of 

channels to extract high-level semantic features. In the decoder path, transposed 

convolutions are used for upsampling, followed by another DenseBlock at each 

stage. Skip connections from the encoder are concatenated with the decoder 

features after adaptive resizing to ensure spatial alignment.

Results

The predicted b=2000 s/mm2 volume from the single-shell data based on 

preliminary training and validation process is shown in Fig 1. The plot 

highlighting the convergence of the training and validation loss is shown in Fig 2.

Discussion

Our model was trained and validated on HCP preprocessed data. A total of 19 

subjects were selected of which 16 subjects were used for training and 3 subjects 

were used for validation. The model was trained  with an initial learning rate of 

0.001 and a batch size of 16. A weighted loss function combining mean squared 

error and L1 loss  was used.  The results shown in this study are based on 

preliminary findings and the training process. While our model demonstrates a 

reliable performance on HCP data, the model can be further improved by 

incorporating spherical harmonics, learning the nonlinear mapping between the 

spherical harmonics coefficients between b1000 and b2000 levels which is a 

planned future work..

Conclusion

We introduced a V-NET-based deep learning approach incorporating MSA for 

improved multi-shell dMRI estimation. Our model effectively captures both local 

and global diffusion features through multi-scale receptive fields, spatial-channel 

attention and dense connectivity. Preliminary results demonstrate promising 

reconstruction accuracy paving the way for future enhancements using spherical 

harmonics.
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Introduction

Prostate cancer (PCa) is a leading malignancy in men globally, with rising 

incidence in India. Early detection and accurate characterization are crucial. While 

multiparametric MRI (mpMRI) is the standard for PCa detection and staging, it 

has limitations, including a 76% negative predictive value for clinically significant 

tumors (Grade Group ≥2) [1], poor tissue differentiation, and inter-observer 

variability. Hybrid Multidimensional MRI (HM-MRI) integrates ADC and T2 

mapping to generate tissue maps. Unlike mpMRI, which relies on subjective 

interpretation, HM-MRI directly measures tissue microstructure, avoiding contrast 

agents and improving diagnostic accuracy. This is the first Indian study evaluating 

HM-MRI’s relevance for PCa detection.

Methods

After institutional ethical clearance, HM-MRI and mpMRI scans were acquired 

for four patients using a 3T MRI (Philips Ingenia ElitionX). The HM-MRI 

protocol included echo times (47, 75, 100 ms) and b-values (0, 750, 1500 s/mm²), 

enabling simultaneous ADC and T2 measurement per voxel. This generated a 3×3 

multidimensional datasets, facilitating tissue composition mapping of epithelium, 

stroma, and lumen fractions. Two radiologists segmented tumors per PIRADS 

v2.1 criteria. Tissue composition maps were computed using an in-house 

MATLAB script (MathWorks). Biopsy reports were analyzed to validate 

correlations between tissue composition and histopathology findings.

Results

Our preliminary work shows HM-MRI identified significant changes in tissue 

composition, with a marked increase in epithelial volume and reduction in lumen 

space in areas suspicious for PCa. Compared to mpMRI, HM-MRI demonstrated 

improved visualization of tissue microstructure and diagnostic accuracy of 100%. 

Tissue composition analysis revealed a mean epithelium volume fraction of 

31.55% in cancerous ROIs compared to 16.90% in benign regions. These findings 

suggest HM-MRI captures subtle tissue alterations that may be missed by 

conventional techniques, supporting its use as a reliable imaging modality for 

prostate cancer detection.

Discussion

Our study showed that HM-MRI enhances tissue characterization by quantifying 

epithelial volume and lumen fraction, key indicators of PCa aggressiveness. 

Increased epithelial volume and reduced lumen space, distinct malignancy 

markers, were better defined with HM-MRI than mpMRI, demonstrating superior 

characterization for detecting clinically significant PCa. This is the first evaluation 

of HM-MRI for prostate cancer detection in India, addressing mpMRI’s 

limitations in detecting subtle tissue changes. HM-MRI aligns with global studies, 

such as Lee et al. [1], showing its ability to quantify tissue composition and 

improve diagnostic accuracy. Chatterjee et al. [2] validated its correlation with 

histology. However, the small sample size necessitates further validation in larger 

cohorts.

Conclusion

This study presents the first Indian evaluation of HM-MRI for the detection of 

PCa. By enabling the non-invasive quantitative assessment of tissue composition, 

HM-MRI offers improved diagnostic precision, reduced acquisition times, and the 

potential for virtual pathology.
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Fig. 1 Images from a 64-year-old male (PSA 12.4 ng/mL) with Gleason 4+3 prostate 

cancer. The set includes ADC, T2, tissue composition, and predicted cancer maps. The 

red ROI marks cancer, the green ROI indicates benign tissue. HM-MRI estimated cancer 

as stroma 38.91%, epithelium 14.9%, lumen 46.19%, and benign tissue as stroma 

29.34%, epithelium 0.77%, lumen 69.89%. Gleason 4+3 cancer showed increased 
epithelium with reduced stroma and lumen, accurately detected by HM-MRI.

Table 1 This table presents the ADC values and corresponding fractional volumes of 

epithelium, lumen, and stroma tissues within the regions of interest (ROIs) for cancerous 

and benign areas of the prostate gland in four patients.
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Introduction

Ventriculomegaly can occur due to variety of causes including hydrocephalus. However, the 

relationship between ventriculomegaly and raised intraventricular pressure is non-linear. The 

management is however, guided by changes in optic nerve disk. Routinely, linear indices 

like Evan's index is used to assess ventriculomegaly. Recent literature suggests that 
ventricular volume is more sensitive in predicting optic nerve disk changes. Hence, we 

conducted the pilot study to assess the relationship of Artificial Intelligence Based 

Ventricular Volume and Changes in Optic Nerve disk in patients with Ventriculomegaly. 

Methods

Thirty patients with ventriculomegaly based on Evan's index in MRI brain performed on 

1.5T MR scanner underwent Artificial Intelligence Based Ventricular Volume Assessment 

followed by Optic Nerve Disk Examination. Thirty age & sex matched controls also 

underwent MRI brain and AI based ventricular volume assessment. 

Results

Only 16 out of 30 patients with ventriculomegaly based on Evan's index had true ventricular 

volume increase compared to controls as per AI based tool. Fourteen out of sixteen patients 
with increased ventricular volume on AI based assessment revealed changes in Optic Nerve 

Disk.

Conclusion

Artificial Intelligence based Ventricular Volume Assessment on Brain MRI is superior to 
linear dimensions with better prediction of increase intraventricular pressure. It allows 

identification of patients with true hydrocephalus with high degree of accuracy, thus 

allowing early intervention in true cases and obviates apprehension & unnecessary 

procedure in false positive cases detected by linear ventricular dimensions.
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Introduction

Thyroid-stimulating hormone-secreting pituitary adenomas (TSHomas) are rare, accounting 

for less than 1% of all pituitary adenomas1,2. Although routine MRI sequences are used to 

determine the tumor consistency that could aid efficient tumor resection; MR elastography 

(MRE) has been shown to have improved efficacy in predicting tumor consistency and aid 
preoperative preparation3. Given the rarity of TSHomas, there have been lack of MRE 

studies. We report a case of pituitary adenoma wherein in-vivo MRE as well as in-vitro 

MRE (post-surgical specimen) were performed. 

Methods

A female (16 years) presented with delayed primary amenorrhea with increased frequency of 

micturition. The subject was a part of study approved by the Institute Ethics Committee 

(IEC-842/07.08.2020). A contrast enhanced MRI revealed a T2/FLAIR isointense enhancing 

mass lesion (37 × 30 × 31mm) with extension into bilateral cavernous sinuses and partially 
encasing bilateral cavernous ICA. Inferiorly the lesion was eroding the sellar floor and 

extending into sphenoid sinus. Lesion was diagnosed as a pituitary adenoma and endoscopic 

trans-nasal trans-sphenoidal (TNTS) procedure was planned. Prior to TNTS, MRE was 

acquired on a 3T MR scanner (Ingenia 3.0 T, Philips Healthcare, The Netherlands) using a 

32-channel head coil. Investigations and procedures were done after written informed 
consent from the subject. The MRE sequence was acquired with 48 slices in axial orientation 

(TR 4800ms), with a frequency of 60Hz applied using a specially designed driver for brain 

(provided by author RE) and a Resoundant system (Mayo Clinics). Data processing was 

done using a customized image processing pipeline. The storage modulus (G') and loss 

modulus (G'') were estimated from the images (Figure 1). Post-surgical tumor sample was 
used for in-vitro estimations (completed at physiological body temperature (37℃) within 1 

hour of excision). The samples were carefully prepared using a scalpel blade to create a near-

to-flat surface for testing. Experimental procedure- Nanoindentation testing was performed 

to characterize the viscoelastic properties of tumor tissues using the iNano nanoindenter 

(KLA Corporation, CA, USA). The specimens were placed in a sample holder tray with the 
help of a washer to prevent specimen movement during the experiments. The sample holder 

tray was filled with normal saline solution at 37 °C to maintain the physiological body 

environment. All the experiments were performed using a flat-ended cylindrical indenter of 

100 µm diameter. The cylindrical flat punch tip keeps the contact area consistent throughout 

the indentation. An oscillating force of 20 µN at 10 Hz frequency was applied to the 
indenter, and oscillating displacement and phase difference were recorded. Poisson’s ratio of 

tumor tissue was considered to be 0.5 throughout the analysis. Calculation of viscoelastic 

properties- The viscoelastic properties of brain tissues are expressed in terms of storage 

(quantifying the elastic response of the tissues) and loss modulus (quantifying the viscous 

response of the tissues) (Figure 2). 

Results

MRE brain tumor revealed stiffness, storage and loss moduli as 1330.30±57.4 Pa, 

1226.1±124 Pa, 163.4±386.5 Pa respectively (Table 1). In-vitro indentation at 15 different 

locations were performed on the sample and averaged the viscoelastic properties. The 

storage and loss moduli were 2056.1±197.7 Pa and 508.9±233.9 Pa, respectively. The values 
represent respective mean ± standard deviations. 

Discussion

TSHomas are rare pituitary tumors, and our report offers a unique perspective on their 

characterization using MRE and in-vitro estimations. With the rarity of TSHomas limiting 

the availability of studies, MRE here provides an innovative method to assess tumor 
consistency, which could be vital for preoperative planning. It has emerged as an effective 

technique, offering quantitative measures of viscoelastic properties that can inform surgical 

strategies and possibly enhance outcomes. In this case, both in-vivo and in-vitro MRE 

measurements were conducted, providing a comprehensive view of the tumor's viscoelastic 

properties. The high storage modulus obtained in the in-vitro setting indicates a substantial 
elastic response, while the loss modulus reflects the viscous properties of the tissue. The 

tumour exhibited a notable degree of stiffness and elasticity, aligning with findings from 

prior studies of pituitary tumors where more rigid tissues were often challenging to resect4.

Conclusion

This report underscores the utility of MRE in assessing the viscoelastic properties of 

pituitary adenomas, with both in-vivo and in-vitro methods. 
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Figure 1: Representative image of imaging 

sequences in the subject- A] T 1 weighted, 

B] T2 weighted, C] Stiffness in Tumor 

region, D] Storage modulus Tumor region, 

E] loss modulus in right Tumor region, F] 
Slice selection planning

Figure 2: Formuale used for estimating 

Storage modulus (G') and Loss modulus 

(G‘’) in vitro. 

Table 1: MRE parameters (stiffness; storage modulus and loss modulus in pascals) in 

tumor region and other non-affected brain regions. 



I S M R M  |  I N D I A N  C H A P T E R  2 0 2 5 P R O C E E D I N G S

G. Mothi Prasad1
Santhosh Nedunchezhiyan2 G. C. Jayakumar2 Nitin P. Lobo1

1 CATERS (NMR), CSIR-Central Leather Research Institute, Chennai-600020, India
2 Biochemistry & Biotechnology Laboratory, CSIR-Central Leather Research Institute, Chennai-600020, India

Introduction

Leather processing involves multiple stages that rely on different performance 

chemicals, with water serving as the primary medium for transport. These 

processes lead to significant chemical interactions in animal skin and hide [1]. 

Tanning, a critical step in leather processing, stabilizes collagen fibers by cross-

linking them, making the material durable and resistant to decomposition. While 

MRI has proven effective in revealing water behavior and molecular interactions 

in both clinical and material science contexts [2], its potential in studying leather 

processing remains underexplored. In this study, samples were analyzed from 

various stages of leather processing before and during vegetable tanning to 

investigate molecular and structural changes using MRI modalities. By mapping 

T1 and T2 relaxation times and apparent diffusion coefficients (ADC), we gained 

valuable insights into water mobility and structural rigidity at different processing 

stages. The study demonstrates the potential of MRI as a tool for understanding 

tanning mechanisms and the molecular transformations that influence leather 

properties throughout the processing stages.

Methods

MRI was performed on a 400 MHz Bruker AV-III HD WB spectrometer with a 

MicWB40 probe and MICRO2.5 gradients. Leather samples were analyzed at 

various stages, including untreated skin, pickled pelt stages, and 30% Wattle 

Myrob-treated tanned samples. T1, T2, and ADC were measured using MSME 

and DWI sequences. Parametric maps depicted spatial relaxation and diffusion 

variations, aiding molecular and structural analysis of tanning effects.

Results

The MRI analysis provided key insights into the molecular and structural changes 

across the leather processing stages. T1, T2, and ADC revealed distinct trends 

across the samples. T1 values decreased from ~1168 (after fleshing) to ~626 ms 

(pickled pelt) and ~594 (30% Wattle Myrob-treated), indicating reduced water 

mobility and increased molecular rigidity. T2 initially increased from ~15.0 to 

17.3 ms (pickled pelt), suggesting increased water interaction with the matrix 

during the pickling stage but dropped to 10.1 ms post-tanning, indicating reduced 

water dynamics and enhanced structural rigidity after tanning. Similarly, ADC 

values rose slightly from 9.6 × 10⁻⁴ mm²/s in the flesh stage to 10.3 × 10⁻⁴ mm²/s 

in the pickled pelt stage but dropped to 9.9 × 10⁻⁴ mm²/s after tanning. This 

reflects increased water diffusion during pickling, followed by restricted mobility 

due to tanning-induced matrix consolidation.

Discussion

The progressive reduction in T1 relaxation times reflects increased molecular 

rigidity as water mobility decreases through the processing and tanning stages. 

This trend aligns with the known effects of tanning agents in cross-linking 

collagen fibers, which reduce free water and enhance structural integrity [3]. The 

non-linear behavior of T2 relaxation times highlights the dynamic interactions 

between water and the leather matrix. The initial increase in T2 during the pickled 

pelt stage suggests transient hydration effects, while the subsequent reduction 

after tanning indicates tighter molecular packing and restricted water dynamics 

[4]. The slight rise in ADC during the pickled pelt stage aligns with increased 

water diffusion due to the loosening of the matrix, which facilitates greater water 

movement. The subsequent decline after tanning reflects the densification of the 

leather matrix, restricting diffusion. Compared to existing studies in clinical and 

material sciences, where MRI has been used to probe water interactions and tissue 

structures, this study extends the application to leather science. Few studies have 

explored tanning processes at the molecular level, making this work a valuable 

contribution to the field [5]. 

Conclusion

This study highlights the utility of MRI as a powerful tool to investigate 

molecular and structural changes during leather processing. Key findings include 

the reduction in T1 and ADC values, indicating increased rigidity and restricted 

water mobility, and the non-linear behavior of T2, which highlights hydration 

effects during pickling and matrix densification after tanning. These insights 

provide a deeper understanding of the tanning process, particularly the effects of 

Wattle Myrob in enhancing leather stability. By integrating relaxation and 

diffusion mapping, this research offers a comprehensive approach to studying 

water dynamics and structural transitions, providing insights that can optimize 

leather processing methods in a non-destructive way.
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Introduction

Hypertrophic cardiomyopathy (HCM) is a common 

cardiomyopathy presenting with various clinical symptoms 

ranging from arrhythmias, heart failure, and sudden cardiac 

death. Contemporary evaluation of patients with suspected 

HCM includes cardiac MRI. Free breathing cine cardiac 

MRI sequences, currently under research, provide superior 

patient comfort. Newer techniques like multiparametric 

mapping help in tissue characterisation. We performed a 

study to assess patient comfort during FB- cine-CMR and to 

describe the spectrum of adverse imaging findings in 

patients with suspected HCM.

Methods

This is a prospective study in a tertiary cardiac care centre in 

North west India which included patients with clinical 

suspicion of HCM (n=26) with an age range of 37 to 55 

years. Cardiac MRI was performed using FB-cine sequences 

along with multiparametric mapping. A prior cohort of 

patients who underwent CMR using conventional breath 

hold sequences was used for comparison of patient 

discomfort.

Results

No patient reported any discomfort during the examination 

(as compared to 24% of patients reporting discomfort with 

conventional breath-hold sequences – past data from our 

institute). The maximum left ventricular thickness ranges 

from 22 mm to 29 mm. Adverse prognostic imaging features 

like left ventricular wall thickness > 30 mm was seen in 4 

patients, LVOTO was seen in 11 patients while 9 patients 

had LGE involving > 15% of myocardium. None of the 

patients had LV apical aneurysm at time of scan. Two 

patients showed evidence of myocardial edema.

Conclusion

Free breathing cine CMR offers superior patient comfort as 

compared to conventional breath hold sequences. Adverse 

imaging markers are commonly seen in CMR in Indian 

patients with suspected HCM. 

Feasibility of free breathing cine cardiac magnetic resonance and prevalence of adverse prognosticators in patients with hypertrophic cardiomyopathy.

I S M R M  |  I N D I A N  C H A P T E R  2 0 2 5 P R O C E E D I N G S

1. Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur
2. Department of Cardiology, All India Institute of Medical Sciences, Jodhpur

Dr. Rengarajan Rajagopal1, Dr. Arun Bazal1 , Dr. Surender Deora2



Gradient non-linearity corrections for Indigenous MRI

I S M R M  |  I N D I A N  C H A P T E R  2 0 2 5 P R O C E E D I N G S

(Scientist, Medical System Divison, SAMEER, Mumbai, India) 

Introduction

Phase Encoding (PE) gradients are critical for spatial encoding in MRI systems, 

ensuring accurate representation of k-space data. However, non-linear increments 

in PE gradient areas often lead to redundant k-space coverage and inconsistencies, 

resulting in ghosting artifacts and phase distortions in the phase encoding 

direction. These artifacts significantly degrade image quality and hinder 

diagnostic accuracy [1].This study identifies and addresses the root cause of these 

non-linearities in PE gradient increments. A computational analysis of 

spectrometer waveform data revealed irregularities in amplitude transitions and 

gradient areas. Corrective measures were implemented by ensuring consistent, 

linear current increments for PE gradients. The trapezoidal rule was applied for 

area calculations, and Power Spectral Density (PSD) analysis validated the results. 

The proposed solution demonstrated significant improvements in MRI image 

quality, with a substantial reduction in ghosting artifacts (Figure 1). Corrected 

images showed consistent and linear PE gradient increments compared to non-

linear mappings (Figure 2). This achievement represents a significant 

advancement in improving the fidelity of phase-encoded MRI imaging and 

demonstrates the potential for enhancing image quality across various MRI 

applications.

Methods

The waveform data was extracted from the gradient amplifier output captured at 

the oscilloscope, with the time and amplitude values separated. This data was 

sampled across 256 phase encodes, with each phase encode representing a discrete 

point in time. Signal processing involved identifying rise and fall points by 

detecting amplitude thresholds. Missing points, caused by variations in the signal, 

were interpolated by evaluating the largest amplitude differences between 

adjacent samples, assuming the missed points fell along these transitions. The area 

under the curve of the waveform was calculated using the trapezoidal rule, which 

approximates the integral of the signal by summing areas of trapezoids between 

adjacent points, providing an estimate of the total energy over the scan duration. 

Flat regions of the waveform were identified based on a noise threshold, and these 

regions were averaged to calculate the mean flat amplitude, representing the 

steady-state behaviour of the signal. Additionally, the Power Spectral Density 

(PSD) of the signal was calculated to quantify the distribution of power across 

various frequency components. The PSD analysis provided further validation of 

the flat amplitude measurements, ensuring that no high-frequency noise or 

distortions affected the steady regions of the signal[2]. Finally, after identifying 

any irregularities such as missed points or amplitude variations, corrections were 

applied to the waveform. The correction was performed at the transmitter 

hardware architecture by incorporating a fine-tuning mechanism in phase 

calculation with floating-point hardware support for improved accuracy till 6 

decimal points. The corrected waveform was then validated by comparing the 

original and adjusted areas under the curve, ensuring that the adjustments did not 

introduce significant errors or deviations from the expected behaviour.

Results

Non-linear PE gradients showed redundant k-space coverage. Corrected gradients 

exhibited consistent and linear area increments.

The improvement was quantified by the Root Mean Square Error between the 

actual phase area and the phase area defined by the PSD. The RMSE reduced 

from 0.5625 to 0.1059 after correction, denoting a significant improvement of 

81.17% in the accuracy of the phase area.

Discussion

The observed ghosting artifacts in MRI images were traced to inconsistencies in 

the spatial encoding caused by non-linear increments in phase encode (PE) 

gradient areas. These irregularities lead to redundant or identical k-space coverage 

at certain PE steps, contributing to artifacts in the phase encoding direction. 

Addressing this issue required analyzing waveform data and introducing 

corrections to linearize the increment of PE gradient areas.

Conclusion

The inconsistency in the total area in the phase encode gradients, as evidenced by 

non-linear increment of area at every PE step is rectified and corrected. As a 

result, the increment in area of the current phase encode gradients is more 

consistent compared to previous case. The effect is observed in scanned images as 

a visible reduction in ghosting artifacts along the phase encode direction.

Figure  1. PE Gradient Area  Plot without Gradient cor rection (Left)

PE Gradient Area  Plot with Gradient cor rection (Right)

Figure  2. Comparison between two Phase Encode Gradients

(Gray - Non-linear  Gradient Mapping; Blue  - Linear  Gradient Mapping)

Figure  3.Correc ted images demonstra ted a  significant reduction in ghosting ar tifacts Quantitative  

improvements in phase encoding fidelity were achieved
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Introduction

Intracranial arteriovenous fistula (DAVF) is a neurovascular disorder 

caused by abnormal connections between arteries and veins in the brain, 

leading to disrupted cerebral blood flow. It manifests through a spectrum 

of neurological and non-neurological symptoms, including headaches, 

seizures, cognitive impairments, cranial bruits, and psychiatric symptoms 

[1-3]. Despite its clinical significance, the mechanisms underlying 

DAVF-induced brain dysfunction remain poorly understood. Recent 

advancements in functional neuroimaging, particularly resting-state 

functional MRI (rsfMRI), have allowed researchers to investigate 

functional connectivity alterations in brain networks. Graph-theoretical 

analysis, quantifies topological properties. These metrics provide valuable 

insights into disruptions in brain network organization caused by DAVF 

[4,5]. This study employs rsfMRI and graph-theoretical approaches to 

analyze global and local functional connectivity in DAVF patients, 

comparing them with healthy controls. It also evaluates post-treatment 

changes at one month and one year after embolization. 

Methods

This study prospectively included 50 patients with DAVF and 50 age-

matched healthy controls (HC). rsfMRI and structural images were 

acquired using a 3.0 T GE Discovery MR750W scanner. Functional 

connectivity matrices were constructed using the Dosenbach atlas, which 

parcellates the brain into 160 regions of interest (ROIs) fig (1). Graph-

theoretical analysis was performed using the GRETNA toolbox to 

compute global and nodal network metrics, including assortativity, 

synchronization, hierarchy, degree centrality, clustering coefficient, nodal 

efficiency, and shortest path length. Metrics were evaluated across 

sparsity thresholds (0.05–0.5) to ensure robust connectivity analysis. 

Results

Pre-embolization DAVF patients exhibited significant disruptions in 

global and nodal network properties compared to HC. Global network 

metrics revealed heightened synchronization and reduced hierarchy, 

indicating excessive connectivity and impaired network organization. 

Reduced global efficiency and higher clustering coefficients further 

reflected disrupted information processing. Aggressive DAVF cases 

(Cognard type 2B and above) demonstrated more pronounced alterations. 

At the nodal level, pre-embolization patients showed decreased clustering 

coefficient and nodal efficiency, particularly in regions associated with 

the default mode network (DMN) and visual cortex, correlating with 

clinical symptoms such as cognitive dysfunction and visual disturbances. 

Elevated betweenness centrality and shortest path length in key hubs like 

the posterior cingulate cortex and occipital lobe indicated compensatory 

reorganization but compromised global efficiency .

Post-embolization, partial normalization of network properties was 

observed. At one month, clustering coefficient and nodal efficiency 

showed improvement, while betweenness centrality and shortest path 

length remained elevated. By the one-year follow-up, further recovery 

was noted, particularly in the DMN and visual regions. However, residual 

disruptions in global and nodal metrics indicated the chronic impact of 

DAVF on brain connectivity.

Discussion

The study demonstrates significant disruptions in brain network 

connectivity in DAVF patients, particularly in the DMN and visual cortex, 

which correlate with cognitive and visual impairments. Post-

embolization, partial recovery of functional connectivity was observed, 

though residual disruptions highlight the chronic impact of DAVF. These 

findings underscore the potential of graph-theoretical metrics and rsfMRI 

as valuable tools for assessing treatment efficacy and guiding targeted 

therapeutic strategies.

Conclusion

This study highlights the significant alterations in brain network 

connectivity caused by DAVF and the potential for partial recovery 

following embolization. Graph-theoretical metrics demonstrated the 

potential as a non-invasive biomarker for assessing disease severity, 

therapeutic efficacy, and recovery trajectory. The findings emphasize the 

importance of early and targeted interventions aimed at restoring 

disrupted connectivity in critical regions, particularly the DMN and visual 

cortex. Future research integrating multimodal imaging and longitudinal 

analyses could further elucidate the pathophysiology of DAVF and 

improve personalized diagnosis and treatment strategies. This study 

underscores the promise of network-based approaches for advancing 

clinical care in DAVF patients.

Figure 1. Displaying the mean correlation matrices for the HC, pre- embolization DAVF, 
and post-embolization DAVF groups. Each matrix highlights the connectivity patterns 

between various brain regions, with distinct differences in correlation values and 

distributions across the three groups.
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Introduction

The glymphatic system is crucial for clearing metabolic waste from the brain, and its 

dysfunction is associated with neurotoxicity and cognitive decline. Chronic opioid 

dependence disrupts brain clearance pathways, leading to cognitive deficits and neural 

damage. While buprenorphine is an established treatment for opioid dependence, its effects 
on glymphatic function remain underexplored. This study employs the DTI-ALPS (Along-

the-Perivascular Space) index, to evaluate glymphatic function in opioid-dependent patients 

at baseline and after three months of buprenorphine treatment. Healthy controls are included 

to determine whether treatment restores glymphatic function to normative levels and its 

association with cognitive recovery.

Methods

13 healthy controls (HC) and 13 opioid-dependent patients were recruited from NDDTC. 

Patients underwent buprenorphine maintenance treatment (BMT) and were assessed at 
baseline (2–5 days post-initiation) and follow-up (3 months). All were right-handed and 

provided informed consent. 

Cognitive Tests: At both the time points MOCA and Stroop Color Word Test (SCWT) were 
administered for measuring global cognition and executive functioning.

Diffusion Tensor Imaging: MRI was performed on a 3T Philips Ingenia scanner at AIIMS 

using a spin-echo EPI sequence (TR 1000 ms, TE 83 ms, 64 directions, 2.3 mm slices, b-

value 1000 s/mm²).

DTI ALPS Index Analysis: The DTI-ALPS index quantifies water diffusivity along 

perivascular spaces in the corona radiata relative to diffusion perpendicular to fiber tracts. 

DTI data were pre-processed in FSL (motion correction, eddy current correction, skull 
stripping), and FA maps were generated. Spherical ROIs were placed on white matter tract 

such as superior longitudinal fasciculus and superior corona radiata in MNI152 space (Fig1). 

Statistical Analysis: Paired t-tests compared DTI-ALPS index and cognitive scores at 
baseline and follow-up. Independent t-tests compared HC vs. patients. Spearman correlation 

analysed associations between ALPS index changes and SCWT/MOCA scores. Analyses 

were performed in SPSS v26 (p < 0.05).

Results
The DTI-ALPS index was significantly lower in opioid-dependent patients at baseline (1.20 

± 0.07) vs. healthy controls (1.36 ± 0.05; p < 0.001) but improved after 3 months of BMT 

(1.34 ± 0.06; p < 0.001), aligning with healthy controls. MOCA scores, initially lower in 
patients (25.80 ± 2.35 vs. 27.63 ± 1.06; p = 0.017), improved at follow-up (27.70 ± 1.42; p = 

0.888). SCWT scores improved from baseline (75.90 ± 31.61 s) to follow-up (66.80 ± 27.70 

s; p = 0.012), though initially lower than controls (65.20 ± 8.10 s; p = 0.150). Digit Span 

scores were lower at baseline (9.0 ± 1.1 vs. 12.1 ± 1.2; p < 0.001) but improved at follow-up 

(11.1 ± 1; p < 0.001), nearing control levels (p = 0.310). ALPS index changes correlated 

positively with SCWT (R² = 0.623) and MOCA (R² = 0.533) (Figure 2, Table 1).

Discussion

Baseline ALPS index deficits support evidence that chronic opioid use disrupts brain 

clearance, contributing to neuroinflammation. After three months of BMT, ALPS index 
recovery to control levels suggests glymphatic function improvement, potentially due to 

buprenorphine’s neuroprotective effects. Cognitive gains in MOCA and SCWT align with 

glymphatic recovery, supporting the link between improved clearance and reduced 

neurotoxicity.

Conclusion

BMT significantly improves glymphatic function, as reflected by the DTI-ALPS index, and 

enhances cognitive performance in opioid-dependent patients. The recovery of glymphatic 

function to levels comparable to healthy controls highlights buprenorphine’s potential in 

mitigating opioid-induced neurotoxicity.
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Introduction

: Noninvasive discrimination of Brain-Metastases (Brain-Mets) 

arising from extracranial cancer and spreading to the brain versus 

Gliomas, based on radiographic findings is often inconclusive and is 

only confirmed upon invasive biopsies. The overall geometry of 

tumors and its subcomponents; enhancing, non-enhancing, necrosis, 

and edema, are highly complex and irregular. Therefore, non-

Euclidean measures such as Fractality and Lacunarity can be 

employed to measure the geometric complexity in the tumor 

subcomponents. Advanced imaging techniques, together with AI-

based quantitative platforms are required for non-invasive and 

immediate delineation of Brain-Mets from low-grade and high-grade-

Gliomas (LGG and HGG).

Methods

The study consisted of glioma (N=159, LGG and HGG) and Brain-

Mets (N=200) subjects obtained from TCIA [1- 4] (The Cancer 

Imaging Archive). Preoperative T1w, T2w, T2-FLAIR, and T1-Gd 

MRI images were used for segmenting tumor subcomponents: 

enhancing, non-enhancing plus necrosis and edema. We quantified 

the 3D-Fractal Dimension (FD3D) and lacunarity (Lac3D) measures 

of each tumor subcomponent using an in-house developed pipeline 

[5-6] and further integrated the FD3D and Lac3D measures in ML-

model to develop a quantitative highly precise platform discriminative 

of ‘Brain-Metastases’ from ‘Gliomas’ Fig. 1. Model performance was 

evaluated for each tumor subcomponent (and their combinations) 

using accuracy, sensitivity, specificity, and normalized confusion 

matrices. 

Results

The FD3D and Lac3D of the tumor subcomponents were not 

significantly distinct between Brain-Mets (arising from Breast 

Cancer, Lung Cancer, Melanoma, Gastrointestinal Cancer, and Renal 

Cancer). Measurement of the FD3D of nonenhancing and edema 

subcomponents revealed significantly higher fractal dimension in the 

gliomas compared to Brain-Mets. Measurement of the Lac3D of the 

non-enhancing subcomponent revealed significantly lower lacunarity 

in the gliomas compared to Brain-Mets, whereas the edema 

subcomponent showed no differences. The combination of FD3D of 

nonenhancing and edema was able to discriminate Brain-Mets and 

glioma with 88% accuracy. Discussion

Brain-Mets exhibited lower fractality in the non-enhancing and edema 

subcomponents compared to LGG and HGG, with FD3D of the 

enhancing subcomponent, being intermediate between LGG and 

HGG. This suggests that a smoother geometry of non-enhancing and 

edema subcomponents together with irregular enhancing 

subcomponents is a typical feature of Brain-Mets compared to 

Gliomas (LGG and HGG). Here, we establish that Brain-Mets have 

distinct geometry from gliomas, and these geometric metrics are 

robust, sensitive, and specific features that can discriminate Brain-

Mets. Within Brain-Mets, a subset of subjects with FD3D values 

lower than the threshold for the edema component has poor survival 

indicative of the prognostic relevance of geometric measures.

Conclusion

These findings suggest that tumor subcomponent geometry matters 

and is discriminative of Glioma and Brain-Mets. Thus, bypassing the 

need of immediate biopsies for discrimination of Brain-Mets from 

Glioma 
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Introduction

High-field MRI (1.5T/3.0T) is commonly used in routine 
orthopedics imaging due to its higher soft tissue resolution and 

better signal-to-noise ratio. However, low-field MRI (<1T) is 

gaining recognition due to recent advancements in image 
acquisition and reconstruction and reduced susceptibility artifacts, 

leading to better soft tissue visualization adjacent to bones and 
implants. Low-field MRI also has the advantage of being cost-

effective. 

Methods

 150 Patients with suspected spine, joint pathologies, and 
tendon/ligament injuries, including those with metallic implants, 

were imaged on a 0.5 T MRI scanner (Magnetom Free.star, 

Siemens Healthineers, Erlangen, Germany) installed in a container 
in the Comprehensive Rural Healthcare Services Project (CRHSP) 

facility in Ballabgarh. Images were assessed for image quality, 
identification of pathology, and implant status. 

Results

Low-field MRI showed significantly reduced metal-related 

susceptibility artifact with improved soft tissue/osseous 
visualization in the periprosthetic region Fig01. The VRT images 

generated from MRI data were of high quality Fig02, providing a 

3D perspective in the visualization of data. Diagnosis of joint 
pathologies, partial/complete tendon tears, soft tissue injuries, bone 

marrow edema, and degenerative changes of the spine could be 
made with confidence. 

Discussion

Low-field MRI is a valuable modality, and it can be an alternative 

for patients with metallic implants and those requiring serial 

imaging, where CT is the current modality of choice. It has the 
potential to overcome the extensive implant-induced artifacts that 

are seen in any standard high-field scanners. It also has the 

advantage of low cost and easy accessibility in areas with limited 
resources. 

Conclusion

Low-field MRI can be an important tool in orthopedic and implant 

imaging. It offers artifact reduction, improved periprosthetic 
visualization, and adequate diagnostic capability. 

 Fig 01: Image A & B are morphological T1 images showing 

reduced metal-related susceptibility artifact with improved soft 
tissue/osseous visualization. C is CT like bone imaging with mutli-

echo gradient technique. D showing 3D VRT with prosthesis 

marked with white arrow. 

Fig 02: Showing 3D VRT for foot. 

Low-Field MRI in Musculoskeletal and Implant Imaging 
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Introduction

Gadolinium (Gd), a paramagnetic contrast agent commonly utilized in 

Magnetic Resonance Imaging (MRI) to delineate regions with broken 

blood brain barrier of Glioma, has raised significant concerns due to the 

accumulation of Gd deposits in brain tissues [1-3]. This study aims to 

develop pipelines to eliminate the need for Gadolinium by leveraging 

conventional, non-invasive pre-operative MRI sequences: T1-weighted 

(T1w), T2-weighted (T2w), and T2-Fluid Attenuated Inversion Recovery 

(T2-FLAIR) as shown in Figure 1 to generate an MRI modality 

analogous to the post-Gd-T1w sequence.

Methods

Using pre-operative MRI modalities (T1w, T2w, and T2-FLAIR, Post-

Gd-T1w) from The Cancer Genome Atlas (TCGA) cohort of LowGrade 

Glioma (N=65) and High-Grade Glioma (N=101) subjects [4, 5], two 

strategies were developed. The first approach employs a Mathematical 

Modelling Method, where optimized mathematical operations, such as 

addition and subtraction maps applied to pre-contrast MRI modalities 

(T1w, T2w, and T2-FLAIR), to generate images resembling post-Gd-

T1w sequences as shown in Figure 2. For further validation, MRI data 

from glioma subjects provided by the Sree Chitra Tirunal Institute of 

Medical Sciences and Technology (SCTIMST) were utilized to assess 

the robustness and generalizability of these methods. The second 

approach leverages a Deep Learning Framework based on a 3D 

conditional generative adversarial network (cGAN) architecture [6]. This 

model utilizes pre-contrast MRI modalities as input, comprising 

240×240×155 mm3 for each modality for all the subjects, to predict 

images analogous to the post-Gd-T1w modality

Results

Quantitative analysis of the images generated using the proposed 

mathematical approach demonstrated high similarity to post-Gd T1w 

imaging in TCGA cohorts as well as in medical data received from Sree 

Chitra Tirunal Institute of Medical Sciences, Trivandrum, achieving an 

overall similarity of 80%. The evaluation metrics included a Structural 

Similarity Index (SSIM) of 85% ± 5 and a Peak Signal-to-Noise Ratio 

(PSNR) of 82% ± 5%. Additionally, the Mean Squared Error (MSE) was 

calculated at 0.02 ± 0.03, highlighting the accuracy and reliability of the 

image synthesis process.

Discussion

This study highlights the potential of utilizing various non-invasive MRI 

modalities to synthesize Gadolinium-enhanced T1-weighted (post-Gd-

T1w) images, providing a safer and non-invasive alternative for glioma 

tumour detection. By leveraging pre-operative MRI modalities through 

mathematical modelling and deep learning techniques, the proposed 

methodologies address concerns related to Gadolinium accumulation in 

brain tissues. The mathematical modelling approach achieved an 80% 

overall similarity to post-Gd-T1w images, with satisfactory SSIM and 

PSNR metrics. While this method is computationally efficient and non-

predictive, its performance may vary with imaging sequence variability 

and tumour characteristics. Further optimization and validation on larger 

datasets are essential to enhance its applicability for glioma detection and 

diagnosis.

Conclusion

This study highlights the potential of utilizing various non-invasive MRI 

modalities to synthesize Gadolinium-enhanced T1-weighted

(post-Gd-T1w) images, providing a safer and non-invasive alternative for 

glioma tumour detection. By leveraging pre-operative MRI modalities 

through mathematical modelling and deep learning techniques, the 

proposed methodologies address concerns related to Gadolinium 

accumulation in brain tissues. The mathematical modelling approach 

achieved an 80% overall similarity to post-Gd-T1w images, with 

satisfactory SSIM and PSNR metrics. While this method is 

computationally efficient and non-predictive, its performance may vary 

with imaging sequence variability and tumour characteristics. Further 

optimization and validation on larger datasets are essential to enhance its 

applicability for glioma detection and diagnosis. 
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Introduction

PROPELLER MRI acquired data over rectangular strips, called blades, rotated about 

k-space origin. It has shown to be robust to motion artifacts1 Variable sampling 

pattern of PROPELLER data acquisition makes it SNR efficient compared to cartesian 

data acquisition. Low and Mid-Field MRI have lower SNR requiring longer scan 

times making then susceptible to motion artifacts. Therefore, PROPELLER MRI can 

provide motion robust SNR efficient data acquisition at low and mid field MRI.

Significant T1 reduction is present at low and mid-field MRI systems when compared 

to widely used 1.5T and 3.0T field strengths. Therefore, shorter TR with efficient slice 

packing can provide similar contrast at low and mid field strengths. SMS acceleration 

technique can reduce the effective number of slices to be encoded in a given TR. 

Multiband techniques2,3 uses coil sensitivities and Hadamard encoding uses 

multiaverage scans4 to resolve the simultaneously excited slices. Hadamard encoded 

SMS can exploit multi averaging at low/mid field MRI. 

Compared to multiband, Hadamard encoded SMS excite neighbouring slices, 

therefore cost efficient lower peak B1 RF amplifier can be utilized at low/mid-field 

MRI systems. In this abstract we have presented Hadamard encoded SMS propeller 

MRI tailored for low and mid field MRI systems.

Methods

This cross-sectional, single-center study included 41 patients with chronic constipation 

who underwent MR defecography. Anorectal Manometry (ARM) and balloon 

expulsion tests were conducted prior to MR imaging. MR defecography findings were 

correlated with anal and rectal pressures to classify PFD types based on The London 

Classification. The study also evaluated structural anomalies in cases with normal 

ARM results

Results

Human subject was scanned research a 0.5T scanner using multi-channel coils as per 

IRB approved protocol with informed consent. Proposed method consists of 

optimization in acquisition and reconstruction, Acquisition: Adjacent slices are 

simultaneously exited. Instead of increasing the strength of the refocusing RF pulse, 

slice gradient are adjusted to enable simultaneous refocusing of slices without need for 

high peak B1 RF amplifier. Averaging in PROPELLER is typically done with 

increased number of blades. Instead, same blade angles are acquired multiple time to 

acquire all sets of Hadamard encoding for each blade angle. Imaging prepulses such 

as, fat saturation, spatial saturation and flow compensation modules were updated to 

enable their application over adjacent slices. Reconstruction: Each blade angle has 

complete set of Hadamard encoded data, therefore simultaneous excited slices are 

resolved by linear  combination as first step of the image reconstruction. This enabled 

application of other fast imaging techniques for PROPELLER MRI such as parallel 

imaging and compressed sensing to further reduce the scan time. AI based image 

enhancement methods5 can also be applied with the proposed method since slices are 

resolved at the first step of the image reconstruction pipeline.

Discussion

16 slice T2w PROPELLER MRI is acquired using proposed SMS method with SMS 

acceleration factor 2. Thereby reducing the need of TR from 6900msec to 3500msec 

and more efficient slice packing in one acquisition. The reduction in scan time is used 

to increase NEX from 1 to 2 therefore boosting the SNR of the images while 

maintaining the scan time. Figure 1 shows the reconstructed slices with adjacent slices 

that are simultaneously excited are placed together. Figure 2 shows the similar slice 

for T2w and STIR PDw MRI showing the compatibility of the proposed technique 

with the prepulses, namely inversion prepulse to suppress the fat. Application of 

inversion prepulse is technically challenging with non-Hadamard multiband 

acquisition. Further, proposed technique is not dependent on coil sensitivities and g-

factor of multi-channel coils enabling its application with single channel coils such as 

single channel transmit/receive head coil. The neighbouring slices are similar to each 

other and therefore higher acceleration can be achieved in the compressed sensing 

based fast imaging. CONCLUSION Hadamard encoded PROPELLER SMS is 

proposed for low field MRI scanner to achieve increased slice coverage, reduced scan 

time or increased SNR. Proposed method does not need higher peak B1 RF amplifier 

specifications, does not need pulse stretching or VERSE[6], does not raise SAR 

significantly requiring lower refocusing flip angles, compatible with prepulses such as 

inversion recovery and compatible with existing fast imaging techniques such as 

parallel imaging, partial Fourier and compressed sensing. Further evaluation on other 

contrasts, anatomies and field strength is warranted.

Conclusion

 MR Defecography correlates with the London classification of different types of PFD 

on anal manometry. In addition, it rules out structural anomalies in patients with 

normal ARM. 
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Introduction

Normative modeling is crucial for understanding brain morphometric variations 

across the lifespan. While extensive normative studies exist for Western 

populations, research focused on the Indian population remains limited. This 

study establishes age-related percentile curves for brain volumetric and cortical 

thickness features using GAMLSS on clinical-grade gadolinium-enhanced T1w 

MRI scans, a standard imaging protocol in routine hospital settings. This 

approach ensures immediate clinical applicability while addressing the critical 

need for population-specific normative data.

Methods

We analyzed retrospective data from 1,541 healthy individuals (aged 13-77 years; 

52% female) collected across eight different Max hospitals using gadolinium-

enhanced T1w MRI. Data preprocessing included intracranial volume 

normalization and outlier removal using Local Outlier Factor method. GAMLSS 

was employed to model age-related changes and generate percentile curves. A 

stacked ensemble model, stratified by age groups, was developed for brain age 

prediction to account for non-linear aging trajectories. Model performance was 

evaluated through explained variance, mean absolute error (MAE), and residual 

diagnostics, with comparisons to existing nonIndian normative datasets.

Results

The normative model effectively captured lifespan trajectories of brain 

morphometry in the Indian cohort, revealing distinct aging patterns compared to 

Western datasets, particularly in subcortical volumes and cortical thinning rates, 

illustrated in Fig. 1 and Fig. 2. The stacked ensemble approach demonstrated 

robust performance across age ranges, with strongest predictions in younger 

groups (MAE = 1.44 years, SD = 0.21 for ages 10-19) and reliable performance 

in middle-age (MAE = 2.51-2.74 years) and older groups (MAE = 2.17-2.36 

years), illustrated in Fig. 3. Feature importance analysis revealed age-specific 

patterns, with para-hippocampal regions showing consistent significance across 

age groups and ventricle-related features becoming increasingly important in 

older ages.

Discussion

This study presents the first normative brain morphometry model for an Indian 

cohort using clinical-grade gadolinium-enhanced T1w MRI. Our approach 

demonstrates superior adaptability to non-linear changes compared to previous 

methods like Bayesian regression and MFPR. The use of routine clinical MRI 

protocols enhances the model's immediate applicability in hospital settings, 

potentially facilitating early detection of neurodegenerative disorders. 

Conclusion

We present a comprehensive normative model of brain morphometry specifically 

tailored to the Indian population, demonstrating strong predictive capabilities 

across age groups. This work establishes a foundation for population-specific 

brain aging assessment in clinical settings, with significant implications for 

detecting neurodegenerative conditions.

Normative Brain Morphometry and Brain Age Prediction in the Indian Population Using GAMLSS and Ensemble Models 
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Introduction

While investigating the brain structural-health with aging, the T2-FLAIR 

MRI scans revealed that a substantial subset of subjects even within the 

cognitively normal (CN) group (~50% of the subjects in the age group of 

50–64 age group, and ~85% in the age group >65 years) presented with 

significant load of cerebral small vessel disease (CSVD). The CSVD 

load with aging is observed as Periventricular White Matter 

Hyperintensities (PVWMH) and Deep White Matter Hyperintensities 

(DWMH), accumulation of which may disrupt brain health. This study 

examines whether PVWMH and DWMH have distinct thresholds and 

kinetics that lead to deficits in cognitive domains, compromise in fiber 

integrity and neuroanatomical volumetry and alterations in resting-state 

functional connectivity.

Methods

A kNN-based approach quantified PVWMH and DWMH volume from 

T2-FLAIR, while T1w images were segmented to quantify 174 

neuroanatomical volume, and thickness parameters across NACC 

(N=389) and ADNI (N=382) cohorts. Seed- based network-analysis of 

Default Mode Network (DMN)-regions (PCC, mPFC, LP, PHC) was 

conducted on EPI rs-fMRI scans followed by preprocessing. Fractional 

Anisotropy (FA) measurements were analyzed to understand axonal fiber 

integrity. CN subjects were stratified into WMH quartiles: PVWMH (Q1: 

≤0.93 ml, Q4: >6.12 ml), and DWMH (Q1: ≤0.92 ml, Q4: >2.75 ml). 

Cognitive domains assessed included global cognition, memory, 

language, attention, and executive function. Age-adjusted structural 

parameters and cognitive scores were compared across WMH quartiles. 

Mediation analysis examined WMH effects on cognition via 

neuroanatomical changes, and piecewise fitting identified WMH 

inflection points with age.

Results

The progression kinetics of WMH volumes show an exponential increase 

with age, with PVWMH escalating nearly twice as fast as DWMH, 

particularly after 61 years. Cognitive function remained intact at total 

WMH volumes ≤4.1 ml and PVWMH ≤2.3 ml. As PVWMH surpasses a 

load >2.3 ml (Q3), distinct cognitive impairments are evident in attention 

(DST-F: -12.4%, p=0.002; and DST-B: -17.2%, p=0.002), executive-

function (TMT-A: -21.3%, p=0.015; & TMT-B:-29.9%, p=0.03), and 

semantic memory (animal-naming: -12%, p=0.004), relative to no WMH 

group (Q1), upon adjusting for age. Meanwhile, DWMH >2.75ml (Q4) 

led to impairment in attention domain (DST-F: -10.5%; DST-B: -16.6%). 

Significant volumetric atrophy of various brain structures, along with 

reduced FA in corpus callosum, SLF, SFOF, cingulate and internal 

capsule was observed for subjects with PVWMH >2.3ml. No neuro-

volumetric changes were observed across DWMH quartiles. A mediation 

model indicated that PVWMH contributed to deficits in executive 

functions (TMT-B) via atrophy in set of brain structures: precentral gyrus 

(64%), accumbens (39%), paracentral gyrus (32%), RMFG (31%), and 

lingual gyrus (30%). Additionally, aging brains with CSVD burden 

present with reduced DMN connectivity in the Anterior-Posterior as well 

as within Posterior regions even in early age group.

Discussion

Small vessel infarcts accelerate structural, cognitive and functional 

disruptions beyond typical aging-associated change. This study identifies 

a critical threshold of PVWMH (>2 mL) beyond which cognitive deficit 

in executive function and semantic memory is observed, which is 

mediated via atrophy in a set of neuroanatomic structures. These changes 

are exacerbated by disruptions in commissural and association fiber 

integrity, alongside diminished connectivity within Default Mode 

Network.

Silent Strokes: A Quantitative Investigation on How Small Vessel Disease Rewires the Aging Brain
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Introduction
Glioblastoma (GB) represents one of the most aggressive primary brain tumors, 
characterized by poor prognosis making its treatment particularly challenging [1]. The 
discovery of isocitrate dehydrogenase (IDH1/2) mutations in gliomas by Parsons et al. has 
revolutionized our understanding of glioma biology, as these mutations significantly 
influence patient outcomes [2]. IDH, a small protein involved in crucial cellular processes 
including mitochondrial oxidative phosphorylation and glutamine metabolism is mutated in 
around 7% of grade 4 gliomas. The median overall survival for IDH-mutant grade 4 
astrocytoma (IDHm) is 27–31 months while for IDH-wildtype GB (IDHw) it is 15–18 
months [2]. Traditional methods for detecting the IDH mutation status rely on invasive 
procedures; there is a growing need for non-invasive techniques especially for tumors in 
regions where biopsies carry significant risks. Advanced MRI techniques have emerged as 
promising tools in this direction. Previous studies have utilized diverse qualitative and 
quantitative imaging parameters to evaluate IDH mutational status [3]. IDHw shows 
elevated CBV values compared to IDHm as highlighted in some studies [4]. 

In this study, we investigated a machine learning-based approach using quantitative DCE-
MRI perfusion features to determine the IDH mutation. DCE-MRI parameters may be 
differentially expressed in IDHm and IDHw tumors, reflecting tumor microenvironment and 
angiogenesis. The trained model aims to provide a clinically valuable tool for improved 
diagnosis and treatment planning.

Methods
The dataset for this study comprised pre-operative, contrast-enhanced MRI scans from 92 
grade 4 glioma subjects. The data included 15 subjects with histopathologically confirmed 

IDHm and 77 with IDHw. Imaging was performed using a 3T whole-body MR scanner 
(Ingenia, Philips Healthcare, Best, The Netherlands) with a 16-channel receive-only coil. 

The MRI protocol involved acquiring a tri-planar localizer, conventional MR images, data 
for T1 mapping, and DCE-MRI. Quantitative parameters were computed for the enhancing 

tumor sub-component using the piecewise linear (PL) model, hemodynamic parameters 
were calculated using the first-pass analysis of concentration-time (C(t)) curves, and 
Extended Tofts Model (ETM) was employed to estimate kinetic parameters [5]. 

To identify the most important features for distinguishing between IDHm and IDHw 

gliomas, a random forest-based machine learning classifier was trained on a set of 
quantitative MRI parameters. A recursive feature elimination technique optimized the model 

performance. Given the class imbalance in the dataset, Synthetic Minority Over-sampling 
Technique (SMOTE) was utilized to generate synthetic samples of the minority class [6].

Results
Feature elimination method identified seven key quantitative DCE-MRI parameters that 
included the slopes of the second (Slope-1) and third line (Slope-2) segments derived from 
the piecewise linear (PL) model fit of the concentration-time curve; hemodynamic 
parameters cerebral blood volume (CBV) and cerebral blood flow (CBF) calculated using 
first-pass analysis of the concentration time curves; and kinetic parameters that included 
extracellular space volume (Ve), fraction of plasma volume (Vp), and the volume transfer 

constant (Ktrans). 

The random forest classifier, trained on these seven features, demonstrated robust 
performance across multiple evaluation metrics. The model achieved a five-fold cross-
validation score of 0.866, an F1 score of 0.913, and an area under the ROC curve (AUC) of 
0.96. Figure 2 shows the confusion matrix of the predictions on the test set. 

Discussion
DCE-MRI-derived parameters could serve as reliable non-invasive IDH mutation status 
assessment biomarkers. In our analysis, Ktrans was the most important feature followed by 
Vp, Slope-2, CBV, Ve, CBF, and Slope-1 in descending order of importance. 

The temporal parameters (Slope-1 and Slope-2) suggest the significantly differing timing of 
contrast agent dynamics between mutant and wild-type tumors. Hemodynamic parameters, 
CBV and CBF demonstrate their usefulness as indicators of tumor microvasculature 
correlating well with known tumor biology [5]. This increased vascularity and blood supply 
is associated with more aggressive tumor growth and proliferation, which aligns with the 
poorer prognosis typically seen in IDHw [7]. An increased Ktrans value demonstrates 
increased vessel permeability (representing the leaky nature of the vasculature) associated 
with the aggressive angiogenic behavior of IDHw tumors. The importance of Vp is 
emphasized by an increased vascular density. Lastly, among the kinetic parameters, the 
lower importance of Ve suggests that tumor vascular characteristics (as captured by Ktrans, 
Vp, CBV, and CBF) may play a stronger role in distinguishing these tumor subtypes. The 
robust performance of the random forest classifier indicates the effectiveness of these 
selected DCE-MRI parameters for non-invasive tumor characterization.

Conclusion
Our findings suggest that this approach could potentially reduce the need for invasive 
biopsies, particularly in cases where the location of the tumor makes surgical sampling risky. 
However, the study's retrospective nature and the relatively small sample size warrants 
further validation in larger, prospective cohorts. Additionally, standardization of DCE-MRI 
acquisition and analysis protocols across institutions would be necessary for broader clinical 
implementation.
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Figure 1. Flowchart shows the data processing pipeline, and the steps involved in model 
development.

Figure 2. Confusion matrix shows the predictions from the model on the test data.
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Introduction

Gliomas, a diverse and complex group of primary brain tumors, present a significant clinical 

challenge due to their heterogeneity and profound impact on patient survival outcomes [1]. 

Generally, glioma has three typical regions: edema (ED), enhancing tumor (ET), and 

necrotic core (NC) (fig.1A). Accurate survival prediction is vital for informed clinical 
decision-making. Traditional machine learning (ML) approaches require manual algorithm 

selection and hyperparameter tuning, which can be time-consuming [2]. Instead of manually 

selecting and testing different machine learning algorithms, AutoML can automatically 

identifies the best-performing models for the dataset. Hyperopt-sklearn (HSL), an automated 

machine learning (AutoML) method automatically search for the best model algorithms and 
their respective hyperparameters among inbuilt scikit-learn ML algorithms [2]. Our study 

aimed to utilize AutoML method for selection of regression algorithm and hyperparameter 

optimization process for the prediction of survival days of glioma patients. 

Methods

The radiomic features extracted from the UPENN-GBM dataset (T1GD sequence) [3] were 

pre-processed. Correlation analysis was performed (threshold = 0.15) to reduce redundancy 

and focus on the most informative features, narrowing down the feature set to 63. The 

curated dataset includes 176 patients with 63 radiomics features and clinical data (age, 
gender, IDH1 mutation and MGMT methylation status and survival days). The dataset was 

split into training and test sets in a 9:1 ratio. The workflow of model generation and 

evaluation is shown in Fig.1B.  Correlation analysis and Kaplan Meier Survival analysis was 

performed to analyse the data and model outcomes.Results

Comparative studies of the proposed VAE-UNet were performed with state-of-the-art 
models like QSMNet, xQSM7, and 3D-UNet as in DeepQSM and the corresponding 

performance metrics were summarized in Table 1 and 2. A visual comparison of the 

proposed VAE-UNet with COSMOS is shown in Figure 1. Our experimental studies 

demonstrate that the VAE-UNet model efficiently balances accuracy and generalizability in 

QSM reconstruction

Fig.1 (A) Three regions of glioma, edema (ED), enhancing tumor (ET), necrotic core (NC). 

(B) Workflow of study. (C) Statistical analysis of survival day groups showing performance 

of SGDRegressor model in different ranges of survival days. 

Results

The performance of the generated SGDRegressor (SDGR) was evaluated using the 

difference between actual survival days and predicted survival days and survival days group 

analysis (Fig.1C).  We identified 15 features that are most important in the predictions of the 

SGDR model (Fig.2A). We found that Age was a critical feature among other important 
features. The analysis between actual and predicted survival days revealed that the model 

performs best in the 301-400 days, 401-500 days and 501-1000 days range, with a mean 

deviation of 189.7, 159.7 and 128.4 days, respectively. However, the model struggles 

significantly in the lower (0-100 days) and upper (1000-2000 days) ranges, where deviations 

are substantially higher (Fig.1C). The Kaplan-Meier Survival Analysis shows that patient 
having IDH1 mutation and MGMT methylation has better prognosis than patient having 

with wildtype IDH1 (p-value: 0.03) (Fig.2B) and unmethylated MGMT (p-value: 0.00) 

(Fig.2C). The correlation analysis showed a negative correlation between age and survival 

days (Pearson Correlation: -0.296, P-value: 0.00023) (Fig.3). 

Fig.2 Statistical analysis of survival day groups (A), Kaplan-Meier Survival Analysis of 

IDH1 mutation (p-value: 0.03) (B) MGMT methylation (p-value: 0.00) (C).

Fig.3 Correlation of age with Survival days (Pearson Correlation: -0.296, P-value: 0.00023)

Discussion

Our results demonstrated that the SGDR model showed adequate predictive accuracy within 

the 301-400 days, 401-500 days and 501-1000 days range, highlighting its potential in 

predicting mid-range survival for glioma patients. However, significant limitations emerged 

when attempting to generalize predictions to shorter and longer survival ranges, with the 
accuracy of the model substantially declining. Furthermore, feature importance identified 

age as a key parameter, along with other MRI-derived features, reinforcing its clinical 

relevance in glioma prognosis. The association of IDH1 mutations and MGMT methylation 

showed better survival in glioma [4]. The negative correlation between age and survival 

days suggests that as age increases, survival days tend to decrease. The limited sample sizes 

across extreme survival groups contributed to performance variability and hindered the 

robustness of the model in these ranges. Glioma survival predictions were likely influenced 
by multifactorial and nonlinear interactions among variables, including tumor heterogeneity, 

patient demographics, and treatment responses [5]. Thus, more complex modeling 

techniques coupled with larger sample size could have better address the heterogeneity 

within the dataset.

Conclusion

Our study highlights the potential of AutoML in glioma survival prediction, simplifying 

model development for clinicians but requires further validation for clinical deployment. 

Future work will focus on XGBoost, neural networks, and other algorithms, improved 
feature engineering, and balancing data to enhance predictive accuracy and reliability
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Introduction

Aging is a continuous process with cortical thinning as a 

common consequence[1]. This study aimed to evaluate 

regional cortical thickness, volume and area differences 

associated with age in an Indian healthy population. 

Methods

76 healthy individuals categorized into a younger age group 

(G1), n=25, age 25-40 years; a middle-aged group (G2), 

n=24, age 41 to 55 years; and an older group (G3), n=27, age 

range 56-80 years. Participants underwent 

neuropsychological assessments and MRI scanning.

  Results

The elderly group had significantly reduced cortical thickness 

and volume in middle temporal, lateral occipital, whereas 

reduced cortical thickness in middle temporal, precuneus, 

superior temporal, lateral occipital, insula, posterior cingulate 

in elderly as compared to younger participants (Figure 1). 

Age-related declines were also observed in auditory verbal 

learning, AVL memory, backward digit span, Digit Symbol 

Substitution Test in older as compared to younger groups. 

The reduced mean cortical thinning and total cortical volume 

correlated with age (Figure 2).

Discussion

our study underscores the impact of aging on cortical 

thickness, volume and area revealing significant thinning in 

regions such as the posterior cingulate, precuneus, middle 

temporal areas, and lateral orbitofrontal cortex, which 

correlates with decline cognitive performance. Along with 

aging, reduced cortical thickness and volume might reflect 

neuronal degeneration, with contributing factors including 

myelin loss, brain atrophy, and neuroinflammation, which 

tend to be more pronounced in older adults[2]. 

Conclusion

These findings are important for early detection of cognitive 

decline in ageing population and the need for targeted 

intervention. .

Figure 1: Significant cortical thickness (CTh) difference 

between young (G1) and elderly (G3) groups individuals

Figure 2: Correlation plot between Cortical thickness, 

volume and age (years) (a) left hemispheric (LH), right 

hemispheric (RH) and global cortical thickness (Mean CTh); 

and (b) left hemispheric (LH), right hemispheric (RH) and 

total cortical volume.
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Introduction

While the Quantitative Susceptibility Mapping (QSM) highly recommended for 

quantifying tissue magnetic susceptibility, it remains susceptible to contamination 

from cerebrospinal fluid (CSF), leading to erroneous susceptibility estimations, 

particularly in regions such as periventricular and sulcal areas. Although the 

(MEDI+0) algorithm [1], which employs an R_2^* map to segment ventricular 

CSF, substantially mitigates this issue, the reproducibility of the R2* map under a 

fixed threshold remains limited when imaging parameters vary [2,3]. This study 

introduces a refined regularization framework that integrates cerebrospinal fluid 

fraction (CSFF) maps, to mitigate CSF contamination and improve the fidelity of 

QSM reconstructions. The primary objective of this framework is to improve the 

clinical reliability of QSM by incorporating global zero referencing, minimizing 

CSF contamination, and eliminating the smooth shading effect associated with 

partial CSF volume effects.

Methods

The proposed method uses CSFF maps generated using multi-echo T_2^*-

relaxometry. A two-compartment water model was fitted to the multi-echo 

gradient recalled echo (mGRE) signal to separate CSF from intra- and 

extracellular water, producing voxel-wise CSFF maps [4,5]. These maps were 

used to construct a comprehensive CSF mask, serving as an anatomical constraint 

to suppress CSF contamination, and to generate a binary weighting matrix that 

improves the QSM field-to-susceptibility inversion. In particular, the 

optimization framework integrates a novel regularization term informed by the 

global CSFF mask to promote spatial homogeneity in CSF regions, alongside a 

structural weighting matrix that incorporates gradients from both magnitude 

images and CSFF maps.

The susceptibility map χ was estimated by minimizing the following cost 

function:

where f denotes the measured field map, d represents the dipole kernel, and W is 

a noise-weighting matrix. The first term ensures fidelity to the measured data, the 

second and third ensures reduced streaking artifacts that arise from the ill-posed 

nature of the dipole inversion problem utilizing the binary gradients masks from 

magnitude data M_G and the CSFF map 〖CSFF〗_G where the gradient operator 

∇ captures spatial variations in the susceptibility map χ, and the fourth penalizes 

susceptibility variations within CSF-dominant regions using the CSF mask 

M_"CSF"  generated from the CSFF map.

Results

The proposed CSFF-regularization framework markedly improved susceptibility 

estimation by reducing CSF contamination, suppressing streaking artifacts and 

noise in periventricular and sulcal regions, and yielding anatomically consistent 

susceptibility maps. Figure 1 compares masks generated from CSFF and T_2^* 

maps, revealing that CSFF-based masks better capture CSF in the sulcal areas. 

Figure 2 illustrates QSM reconstructions from the MEDI+0 method and the 

proposed CSFF approach, demonstrating more homogeneous CSF regions and 

elimination of the smooth shading effect caused by partial CSF volume near 

sulcal boundaries. Quantitative analysis (Figure 2, Panel B) further indicates a 

lower mean (M = 0.0002) and standard deviation (SD = 0.0238) for QSM values 

in CSF-rich areas using the proposed method, compared with the MEDI method 

(M = -0.0076; SD = 0.1121), signifying enhanced homogeneity in the CSF 

regions.

Discussion

Unlike traditional methods that rely on fixed ventricular CSF references or R2*-

based masks, the CSFF-based approach offers a physiologically informed, voxel-

wise representation of CSF distribution. This novel regularization strategy not 

only reduces susceptibility artifacts but also ensures anatomically consistent 

reconstructions, even in complex or artifact-prone regions.

By leveraging the high signal stability and specificity of the CSFF map, the 

method enhances susceptibility reconstruction fidelity while preserving structural 

details. This is particularly valuable for clinical applications, where precise 

susceptibility quantification is essential for tracking disease progression and 

evaluating therapeutic interventions.

With the growing interest of applying QSM for the longitudinal tracking of 
disease progression in various neurodegenerative conditions and aging—

commonly associated with perivascular space dilation due to obstructed 
cerebrospinal fluid flow [5,6]—CSFF-informed QSM reconstructions are 

becomes increasingly important.

Conclusion

The CSFF-based regularization framework represents a significant advancement 

in QSM methodology by directly addressing CSF contamination—a critical 

challenge in susceptibility mapping. By incorporating anatomically accurate 

CSFF maps into the inversion process, the proposed method delivers improved 

accuracy, reliability, and clinical utility in susceptibility quantification. The 

framework’s ability to suppress artifacts, enhance reproducibility, and improve 

diagnostic precision makes it a powerful tool for both research and clinical 

applications. Future research will focus on validating the method with clinical 

data sets emphasizing longitudinal and cross-sectional analysis.
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Figure 1: The rows indicate CSFF map, Mask 
from CSFF map, T_2^*-map and Mask from 

T_2^*-map respectively.

Figure 2: Panel A presents QSM reconstruct ions from 

the MEDI+0 method and the proposed CSFF 
approach. Panel B presents scatter plot of QSM values 

within CSF Mask. 
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Ketamine and Electroconvulsive Therapy: Distinct Yet Partially Overlapping Mechanisms in Treatment of Depression
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Introduction

Major depressive disorder is a debilitating mental health condition, 

characterized by persistent low mood, anhedonia, sleep disturbances, and 

suicidal ideation. Traditional antidepressants often suffer from low 

efficacy, delayed onset of results, and ineffectiveness in approximately 

40% of depressed subjects. Ketamine and electroconvulsive therapy 

(ECT) are FDA-approved interventions for drug-resistant depression, 

offering rapid and highly effective therapeutic outcomes as compared to 

conventional antidepressants [1]. ECT involves the induction of a 

controlled seizure lasting a few seconds, followed by a post-ictal 

suppression phase characterized by reduced overall brain activity [2]. 

Ketamine, a non-competitive antagonist of N-methyl-D-aspartate 

(NMDA) receptors, induces anesthesia at higher doses [3], but exhibits 

rapid antidepressant effects at sub-anesthetic doses. However, the 

understanding of the impact of ECT and ketamine on the metabolic 

activity of excitatory, and inhibitory neurons and astrocytes is limited. 

Hence, the major aim of the study was to assess the impact of acute ECT 

and ketamine on neural circuitry.

Methods

Two-month-old C57BL6 male mice in the ECT group received a single 

electroconvulsive shock under isoflurane anesthesia via corneal 

electrodes, while the sham group mice were anesthetized but had no 

electric shock [4]. The Ketamine group of mice was injected with (R,S)-

ketamine (25 mg/kg, ip), while controls were injected with a normal 

saline solution. The impact of ECT and Ketamine administration on the 

metabolic activity of neurons and astrocytes was evaluated at different 

time points by conducting ex-vivo 1H-[13C]-NMR spectroscopy in 

conjunction with intravenous [1,6-13C2]glucose or [2-13C]acetate 

infusion, respectively (Fig. 1) [5]. The transcriptomics and quantitative 

phosphoproteomics were conducted to assess the effects of these 

interventions at the molecular level in the mouse brain. 

Results

Sub-anesthetic ketamine administration led to a transient enhancement in 

cerebral glucose oxidation within 15 min of injection, and normalized 

within 25 min. A comparable surge in neurometabolic activity was 

observed during ECT-induced seizure (+64.3±15.3 %, p=0.005), while 

the astroglial activity remained unchanged. However, a drastic reduction 

in the oxidative metabolism in neurons (-43.3±3.0 %, p=0.0004) and 

astrocytes (-37.0±0.8 %, p=0.0003) occurred immediately after seizure 

termination, with a pronounced increase in non-oxidative glucose 

consumption (+112.8±9.8 %, p=0.0001). Interestingly, the neuronal and 

astroglial activity normalized within one hour after ECT. 

Phosphoproteomic analysis showed a very distinct set of differentially 

expressed phosphoproteins involved during ECT-induced seizure and 

after one hour of electroconvulsive shock. The transcriptomic analysis 

indicated a marginal overlap in the biological processes involved in the 

molecular mechanisms of acute ECT and ketamine interventions.

Discussion

ECT and ketamine treatments are known to enhance synaptic plasticity, 

neurogenesis, and synaptogenesis and reduce neuroinflammation [6, 7]. 

Ketamine-induced surge in the neurometabolic activity is in line with a 

previous study in rats highlighting a transient surge in glutamate release 

within PFC, which is responsible for the rapid antidepressant effects [8]. 

ECT was also found to enhance the metabolic activity of glutamatergic 

and GABA’ergic neurons during the seizure phase similar to ketamine’s 

induced glutamate surge. However, the neurometabolic effects of ECT 

differ from ketamine in the post-ictal period, where neuronal and 

astroglial metabolic activity gets drastically reduced. Moreover, ECT 

seems to shift the brain ATP generation machinery to anaerobic glucose 

metabolism during the seizure and post-ictal suppression phase, 

reflecting an adaptive response of the brain to meet high energy demands 

or oxidative stress, potentially contributing to ECT’s therapeutic effects. 

Interestingly, the effects of ketamine and ECT were normalized to their 

respective control, within 25 and 60 minutes of administration, 

respectively. The transcriptomic analysis further shows the distinction in 

the neuromodulatory effects of ECT and ketamine interventions in mouse 

brains.

Conclusion

The assessment of metabolic activity of glutamatergic, GABAergic 

neurons, and astrocytes during acute ketamine administration, ECS-

induced seizures, and post-ictal suppression phase provides valuable 

information about the potential mechanisms of ECT and ketamine and 

could inform the development of optimized treatment strategies for 

depression and minimize the immediate side effects associated with these 

interventions. ional analysis.
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Fig 1A. Experimental timeline depicting mice were infused with [1,6-13C2]glucose after 3.5, 15 and 60 
min of ECS, respectively. Brain Metabolism was arrested 7 min post infusion, B. Representative 1H-[13C]-

NMR spectra depicting total concentration of neurometabolites in top most panel, and 13C labeled 
neurometabolites in the lower panel at different time points in Sham and ECS mice.
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Introduction

Brain tumor progression is closely linked to angiogenesis, where blood vessel density serves 

as a key indicator of tumor development and grade. Quantitative dynamic contrast enhanced-

magnetic resonance imaging (DCE-MRI) has emerged as a valuable tool in brain tumor 

grading and monitoring treatment response. However, accurate quantification requires 
precise segmentation of large blood vessels (LBVs), as their presence can confound tumor 

assessment. Traditional manual and semi-manual approaches to LBV segmentation are time-

consuming, subjective, and error-prone [1], [2]. The objective of this study was to develop 

and validate an automated deep learning approach using Swin UNETR architecture [3] for 

accurate LBV segmentation in brain tumor patients, addressing the critical need for efficient 
and reliable vessel segmentation in clinical practice.

Methods

We conducted a retrospective study using MRI data of 142 glioma patients from FMRI, 
Gurugram, India. All imaging was performed on a 3T MRI system using a comprehensive 

protocol that included structural sequences (T1-weighted, T2-weighted, PD-weighted), 

DCE-MRI, and fluid-attenuated inversion recovery (FLAIR) imaging. Data processing was 

executed through an in-house developed MATLAB-2022a tool [4], incorporating essential 

pre-processing steps including skull-stripping, image registration, and noise filtering. Our 
quantitative DCE-MRI analysis pipeline integrated multiple analytical approaches: 

piecewise-linear model fitting for deriving alpha, beta, and slope parameters (Slope-1, 

Slope-2); first-pass analysis for cerebral blood volume (CBV) and cerebral blood flow 

(CBF) calculations; and generalized tracer-kinetic modeling to estimate volume transfer 

constant (Ktrans), plasma volume fraction (Vp), and extravascular-extracellular-space 
volume fraction (Ve). For segmenting the LBVs we implemented the Swin UNETR 

architecture, which combines the hierarchical feature extraction capabilities of Swin 

Transformers with the U-shaped encoder-decoder structure. The data was systematically 

divided into training (90), validation (17), and testing sets (35). The Swin UNETR model 

was trained using an Adam optimizer with a batch size of 16 to 200 epochs and the ground 
truth was generated using pre-defined segmentation protocols [5], with manual refinements 

by expert radiologists. To evaluate model generalizability and ensure robust validation, we 

included diverse brain tumor types, including 10 lymphoma and 10 metastasis patients. 

Whole tumor region was segmented using an in-house deep learning based tool on FLAIR 

images [6], with manual refinement applied when necessary to ensure accurate delineation. 
Statistical analysis included calculation of Dice similarity coefficients for segmentation 

accuracy, and t-tests for comparing quantitative parameters between tumoral regions with 

and without LBVs using both ground truth and predicted masks along with the comparison 

between generated ground truth and predicted mask itself as shown in flow diagram (Figure-

1).

Results

The Swin UNETR model demonstrated exceptional performance in LBV segmentation 

across all datasets (Figure-2). The model achieved Dice scores of 0.979 and 0.973 on 

training and validation sets, respectively. Test set performance showed robust 

generalizability, with Dice scores ranging from 0.929 to 0.982 across different tumor types 

(Table-1). Quantitative analysis revealed significant differences (p<0.05) in DCE-MRI 

parameters between regions with and without LBVs. The benefit of vasculature 
segmentation was further validated through bar plots and box and whisker plots of 95th 

percentile (Figure-3) of multiple quantitative parameters except the Slope-2 as tumor and 

vasculature both show lower intensity. After LBV removal using both ground truth and 

predicted masks, the quantitative parameters in non-vascular tumoral regions showed 

statistical similarity (p>0.05), confirming the reliability of proposed approach.Discussion
The observed ghosting artifacts in MRI images were traced to inconsistencies in the spatial 

encoding caused by non-linear increments in phase encode (PE) gradient areas. These 

irregularities lead to redundant or identical k-space coverage at certain PE steps, contributing 

to artifacts in the phase encoding direction. Addressing this issue required analyzing 

waveform data and introducing corrections to linearize the increment of PE gradient areas.

Discussion

The high performance of our Swin UNETR-based approach represents a significant 

advancement in automated LBV segmentation for brain tumor analysis. The model's robust 

performance across different tumor types demonstrates its potential for broad clinical 

application. Our results suggest that accurate vessel segmentation significantly impacts the 

quantification of tumor parameters, highlighting the importance of this pre-processing step 
in tumor assessment. The statistical similarity between parameters obtained using ground 

truth and predicted masks validates the clinical reliability of our automated approach. 

However, future work should also evaluate the potential of the proposed model in data from 

other types of brain tumors as well as post-surgery data, particularly for treatment response 

assessment.

Conclusion

The proposed Swin UNETR-based approach provides an accurate and generalizable solution 

for LBV segmentation in brain tumor imaging. The demonstrated performance across 

diverse tumor types, coupled with its ability to maintain parameter accuracy, positions this 
tool as a valuable asset for improving tumor grading accuracy and treatment planning. 
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Figure-1: Methodology flow diagram.

Figure-2: Conventional images of (a) Grade-4 and (b) Grade-2 patients and the ir respective large 

blood vessel (LBV) masks generated using ground truth (LBV maskGT) and Swin UNETR (LBV 

maskpred). The comparison between both masks is shown in the LBV maskpred column, where 

white regions indicate similarity, green shows overestimated regions, and magenta shows 

underestimated regions

Table-1: Model training parameters and performance  metrics of testing da ta. 

Figure-3: Box plots of mean and standard deviation and bar and whisker plot of 95th percentile of 

various quantitative parameters with and without vasculature (ground truth (GT) and predic ted (pred)) 

showing sta tistical difference in each case. * shows signif icant difference.



Introduct ion

Thalassemia is a hereditary blood disorder tha t leads to severe anemia, requir ing regular blood 

transfusions as a primary treatment.[1-3] However, repeated transfusions result in cardiac iron overload 

(CIO), a critical complica tion causing cardiomyopathy, arrhythmias, and heart failure, which is a 

leading cause of mortality in tha lassemia major. Early detection of CIO is crucial but remains 

challenging due to the limitations of existing diagnostic methods like serum fer ritin measurement, 

endomyocardial biopsy, and T2*-weighted MRI, which face issues of invasiveness, cost and technical 

constraints. This study addresses these gaps by proposing a radiomics-based, noninvasive approach for 

CIO detection and staging, using high-dimensional quantitative imaging fea tures and machine learning 

algorithms for accura te and ear ly diagnosis, enabling better clinical outcomes. 

Methods

This study utilized the CHMMOTv1 [4] datase t comprising 124 tha lassemia patients, focusing on T2* 

and R2* to classify CIO into Normal (T2*>20 ms), Moderate (20 ms>T2*>10 ms), and Severe (T2*<10 

ms) categories. For the current study 42 subjects were randomly selected, covering all three stages. 

Regions of interest (ROIs) were segmented (Figure 1- (a) and (b)) from cardiac MRI images (TE/TR 3.2 

ms/31.3 ms, matrix size = 128×116, slice thickness = 10 mm, FOV = 40×40 cm) using 3D Slicer 

sof tware. Using the pyRadiomics Python library, a total of 856 radiomic fea tures were extracted. These 

fea tures encompass various categories, inc luding first-order sta tistics, texture fea tures, shape 

descriptors, and wavele t-transformed fea tures. Fea ture selection techniques—Random Forest (RF), 

Recursive Fea ture Elimination (RFE), Lasso Regression, and Boruta—used to identify the top 10 most 

relevant fea tures for classification. Machine learning models RF, suppor t vector machine (SVM) and 

Extreme Gradient Boosting (XGBoost) were trained on these fea tures. Class imbalance was addressed 

using the Synthetic Minor ity Oversampling Technique (SMOTE)[5]. Model performance was evalua ted 

using accuracy, F1 score, and AUC-ROC, ensuring the identification of the best classifier for CIO 

detection. 

Results

Feature selection techniques, inc luding RF, RFE, Lasso Regression, and Boruta , successfully identified 

the top 10 most relevant fea tures. Among these, texture and shape fea tures stood out as critical 

biomarkers for classification. The study demonstrated the effectiveness of radiomics fea tures and 

machine learning model in classifying cardiac iron overload (CIO) severity levels in tha lassemia 

patients. Among the tested models, XGBoost [6-8] achieved the best performance with an accuracy of 

91%, an F1 score of 0.92, and an AUC-ROC of 1.00, (Figure 2 – (a) and (b)) showing superior capability 

in distinguishing Normal, Moderate, and Severe categories. RF performed reasonably well, with an 

accuracy of 73% and an F1 score of 0.74, but struggled with the Moderate class due to overlapping 

fea ture distributions. SVM displayed lower effectiveness.

Discussion

The findings highlight the potential of radiomics and machine learning for non-invasive detection of 

CIO. XGBoost's ability to handle complex data interactions and high-dimensional datase ts made it the 

prefer red model for this application. The study also emphasized the signif icance of texture and shape 

fea tures in captur ing structural and textural alterations in cardiac tissues due to iron deposition. 

However, challenges such as the small datase t size and class imbalance impacted the differentiation of 

Moderate and Severe categories. Future efforts should focus on employing deep learning techniques, 

such as convolutional neural networks (CNNs) , for automated fea ture extraction and integrating 

radiomics fea tures with clinical parameters like serum fer ritin and T2* relaxation times. These 

advancements could enhance model robustness, improve diagnostic accuracy, and suppor t the 

development of a standardized multi-modal tool for ear ly detection and personalized management of 

CIO in tha lassemia patients.

Conclusion

Our clustering-based analysis of Multiparametr ic-MRI demonstrates tha t high-intensity clusters of 

Ktrans, Ve, mean Ktrans and mean Kep are sta tistically signif icant parameters for differentiating TP 

from PsP. Tumor volume difference between TP and PsP was near signif icant (p=0.07), suggesting tha t 

TP is associated with more severe tumor profile. These findings suppor t using DCE-MRI and clustering 

techniques as non-invasive tools for distinguishing TP from PsP. Future studies should validate these 

results with larger datase ts and integrate more comprehensive multimodal imaging data.
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Abstract

This study evaluates the potential of MRI in assessing pancreatic 

changes and predicting microangiopathy in Type 2 Diabetes 

Mellitus (T2DM). A prospective observational study of 125 T2DM 
patients was conducted to analyze pancreatic morphology, volume, 

fat fraction, and elasticity, and their correlation with diabetic 
nephropathy, neuropathy, and retinopathy. Pancreatic fat fraction 

and elastography were significantly associated with diabetic 

retinopathy (p = 0.041, 0.054), while maximum pancreatic width 
was a key parameter for distinguishing microangiopathy (p = 

0.020). This comprehensive approach, combining MRI parameters 
with clinical and biochemical markers, enhances diagnostic 

accuracy for diabetic complications and supports better 

management strategies. 

Introduction

Type 2 Diabetes Mellitus is a chronic disorder characterized by 

significant microvascular complications that impair quality of life. 

Traditional diagnostic tools offer limited insight into pancreatic 
changes associated with these complications. MRI provides a non-

invasive method for structural and functional evaluation, which 
this study leverages to explore its diagnostic role in 

microangiopathy. 

Methods

A prospective single-center study recruited 125 T2DM patients. 

Pancreatic MRI parameters, including morphology, volume, fat 
fraction, elastography, and ADC values, were assessed using a 3T 

MRI scanner. Statistical analyses identified correlations between 
these parameters and diabetic microangiopathy. 

Results

Significant differences in pancreatic MRI parameters were 
observed between patients with and without microangiopathy. 

Pancreatic fat fraction and elastography were notably higher in 

diabetic retinopathy cases (p = 0.041, 0.054). Maximum width at 
the pancreatic body showed potential in predicting 

microangiopathy (p = 0.020). ROC analysis indicated moderate 
discriminatory power of these parameters. 

 

Fig. 1. 55 years old male with Type 2 Diabetes Mellitus with 

microangiopathy (diabetic nephropathy) 

MR Elastogram shows pancreatic stiffness drawn within the free 
hand region of interest as - 3.2kPa. 

Discussion

 MRI-based assessments offer a dual advantage of structural and 

functional evaluation, enabling early detection of complications. 
Pancreatic fat fraction and elastography emerged as critical 

predictors for retinopathy, while pancreatic width correlated with 

overall microangiopathy. These findings underscore the diagnostic 
value of MRI in T2DM management.

Conclusion

 MRI provides a reliable, non-invasive modality for assessing 
pancreatic changes in T2DM, aiding in the prediction of 

microangiopathy. Incorporating MRI findings with clinical 

markers enhances the ability to identify and manage diabetic 
complications effectively. 
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Abstract

This study investigates the role of MR Defecography, an MRI-

based technique, in diagnosing pelvic floor dysfunction (PFD) in 

patients with chronic constipation, and its correlation with anal 
manometry (ARM). A cross-sectional analysis of 41 patients was 

conducted, where MR defecography, ARM, were performed. The 
results showed that 65.9% of patients were diagnosed with PFD by 

ARM. MR defecography correlated with ARM findings, especially 

in Types 1 and 3 PFD, and detected structural anomalies in 
patients with normal ARM and balloon expulsion tests. The 

integration of MR defecography with ARM provides a 
comprehensive approach, improving diagnostic accuracy by 

combining functional and structural evaluations. This dual 

diagnostic methodology supports more targeted clinical decision-
making, enhancing the management of chronic constipation.

Introduction

Chronic constipation is a complex clinical problem, often hiding 

subtle functional and structural disruptions in pelvic floor 
dynamics. While traditional methods like anal manometry (ARM) 

and balloon expulsion tests assess functionality, MR defecography 
provides a cutting-edge, non-invasive visualization of structural 

abnormalities. 

This study evaluates the findings of Magnetic Resonance (MR) 

Defecography in patients with chronic constipation and analyzes 

its correlation with anorectal manometry (ARM) parameters and 
the balloon expulsion test, aiming to improve diagnostic accuracy 

for pelvic floor dysfunction (PFD).

Methods

This cross-sectional, single-center study included 41 patients with 
chronic constipation who underwent MR defecography. Anorectal 

Manometry (ARM) and balloon expulsion tests were conducted 

prior to MR imaging. MR defecography findings were correlated 
with anal and rectal pressures to classify PFD types based on The 

London Classification. The study also evaluated structural 
anomalies in cases with normal ARM results

Results

Out of 41 patients, 27 (65.9%) were diagnosed with PFD on ARM. 

Type 1 PFD was observed in 12 patients (44.4%), Type 2 in 3 
(11.1%), Type 3 in 11 (40.7%), and Type 4 in 1 patient. MR 

defecography findings were positive for PFD in 

Fig. 1. 23y/m having chronic constipation. Anorectal manometry 
shows normal findings.MR Defecography during different 

maneuvers shows paradoxical decrease in anorectal angle during 

straining and defecation with prominent impression of puborectalis 
muscle.

7, 3, and 8 patients in Types 1, 2, and 3, respectively. Structural 

anomalies were identified in the remaining cases. Type 1 PFD 
patients (58.3%) demonstrated a paradoxical decrease in the 

anorectal angle on MR Defecography, while Type 3 PFD patients 

(72.7%) exhibited non-opening of the anorectal angle, findings 
consistent with ARM classification. Among the 14 patients without 

PFD on ARM, 12 had normal balloon expulsion tests, but MR 
Defecography revealed structural anomalies. The study showed 

excellent inter-observer agreement 

Discussion

The integration of MR Defecography and anal manometry 
provides a comprehensive diagnostic approach, offering novel 

insights into the interplay between structure and function in PFDs. 

Unlike standalone techniques, this combined method enhances 
diagnostic precision, particularly in complex cases such as mixed 

incontinence or obstructed defecation syndrome. Comparison with 
existing literature highlights the added value of MR Defecography 

in clinical decision-making and treatment planning.

Conclusion

 MR Defecography correlates with the London classification of 
different types of PFD on anal manometry. In addition, it rules out 

structural anomalies in patients with normal ARM. 
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Introduction

Glioblastomas are aggressive primary brain tumors with a median 

survival of 12–15 months despite surgery. IDH1 mutations significantly 

improve survival to approximately 31 months, highlighting the clinical 

importance of presurgical identification. Although definitive IDH1 

testing relies on operative specimens due to low imaging specificity, 

radiomics offers a non-invasive alternative by extracting quantitative 

image features that characterize tissue heterogeneity, morphology, and 

texture. Various studies in the literature elaborate the link between these 

imaging features to molecular profiles. In this study, we evaluate the 

utility of texture features like GLCM and GLDM for IDH1 prediction 

using a simple linear SVM classifier ensuring performance gains are tied 

directly to raw texture information without added complexity from 

advanced methods. It also demonstrates the potential of these features to 

reflect necrosis patterns influenced by IDH1 mutations.

Methods

The datasets required for this study are collected from The Cancer 

Imaging Archive (TCIA). The preliminary training, validation and test 

are performed on the UPENN-GBM dataset, and external evaluations on 

the BRATS-TCGA-GBM dataset. In both datasets, there are MRI scans 

of biopsy-confirmed glioblastomas with genome sequencing of the IDH1 

gene, identifying both wild-type cases and R132H mutants whose age 

and the methylation status are matched. The important steps in the 

methodology are tumor segmentation, feature extraction, and model 

building. Tumor segmentation is performed using a BraTS pre-trained 

volumetric segmentation model from the MONAI framework. For the 

feature extraction step, we used Pyradiomics library to extract texture-

related features - Gray Level Co-occurrence Matrix (GLCM), a 24x1 

vector and Gray Level Dependence Matrix (GLDM), a 14x1 vector. For 

predicting the IDH1 status using these extracted features, a Support 

Vector Classifier (SVC) with a linear kernel is employed and evaluated 

using stratified 3-fold cross validation. To address the class imbalance, 

the Synthetic Minority Oversampling Technique (SMOTE) is applied to 

the training folds within a pipeline to prevent data leakage. Statistical 

significance was assessed using the binomial test and Fisher’s method. 

Performance variability was quantified using Clopper-Pearson binomial 

confidence intervals.

Results

Only T1-weighted and FLAIR MR sequences are used for extracting 

GLCM, GLDM features and for subsequent classification tasks. The 

SVC is trained on the UPENN-GBM dataset and tested on both UPENN-

GBM and BRATS-TCGA-GBM datasets. The classification accuracies 

on Unmethylated subsets under the influence of SMOTE is shown in the 

plot below.

Discussion

This study explores how GLCM and GLDM features reflect mutation-

driven necrosis patterns in T1-weighted and FLAIR sequences. Age was 

identified as a major confounder, prompting age-matched samples. 

MGMT promoter methylation, another necrosis driver, was addressed by 

incorporating its heterogeneity in both wild-type and mutant groups to 

isolate IDH1-related patterns. T1 outperformed FLAIR, capturing 

hypercellularity and necrotic boundaries more effectively. GLCM 

excelled in characterizing extensive necrosis through global patterns, 

while GLDM highlighted localized heterogeneity in subtle necrotic 

regions. SMOTE enhanced classification in unmethylated groups 

possibly by acting as a regularizer but showed reduced performance in 

methylated subgroups due to increased feature variability. Overlapping 

necrotic patterns in methylated samples complicated classification 

compared to groups with unmethylated MGMT. External datasets 

introduced challenges, including limited sample sizes and inconsistent 

imaging parameters. These findings emphasize the need for larger, 

standardized datasets to improve generalization and better distinguish 

IDH1-driven necrosis patterns.

Conclusion

Our work employed a simple linear SVM classifier to identify the true 

necrotic reflection of IDH1mutation via GLCM/GLDM features. 

Radiomics textural analysis can effectively identify mutations that 

accelerate necrosis. However, when multiple genetic alterations produce 

similar necrotic patterns, isolating the specific gene responsible becomes 

challenging. A simple classifier-linear SVM, was used in this study to 

highlight the evident textural differences between tumor genotypes, 

particularly in a necrosis based model like ours. Standardizing imaging 

parameters remains critical for developing more robust and generalizable 

studies. Standardized imaging protocols and larger datasets are essential 

for enhancing model robustness and generalizability.

Associating Necrotic Patterns with IDH1(R132H) Mutation in Glioblastomas: A Radiomic Textural Analysis of Preoperative MRI

Fig.1 Accuracy bar plot

Fig.3 GLCM&GLDM necrosis feature comparisons

Fig.2 Entropy boxplot 
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Introduction

MR systems detect weak electromagnetic signal emitted by target anatomy when 

placed in a strong magnetic field[1]. External electromagnetic interference can 

degrade image quality. Narrowband RF interference manifests as zipper artifacts in 

MR images. Increased utility of MRI in clinical workflow has led to the 

democratization of MRI where in-value MRI systems like low-field MRI systems 

and mobile MRI systems[2] with derated hardware and novel use-case 

environments have led to the appearance of RF interference in the MRI. The lower 

signal levels at low-field MRI systems further leads to an increase in vulnerability 

to noise and artifacts[3,4].

Multi-channel receive in MRI has RF interference correlated across multiple 

channels and is utilized to remove the artifacts due to RF interference[3-6]. 

Additional sensors/coils placed away from anatomy are typically utilized to 

estimate and remove the RF interference from imaging coils in an iterative[4] or 

machine learning[3] or sparse low-rank[6] framework. However, these techniques 

rely on additional sensors/coil which may limit the application. Receive channels 

used for imaging-based RF interference removal7 have been proposed however it 

can adversely affect the imaging signal. In this abstract novel formulation of the 

beamforming technique[7-9] is presented to generate virtual channels by 

optimizing the signal-to-RF interference ratio to improve artifact removal and 

overall image quality.

Methods

Virtual Channel Estimation: The k-space signal received at ith channel, ci can be 

modeled as, ci(k) = si(k) + ni(k) + ri (k) , for i=1,2,....Nc, where Nc is the number 

of channels. si, ni and ri are signal, noise, and RF interference, respectively at 

ithchannel. Virtual channels can be used to suppress the RF interference while 

maintaining the image quality since the spatial variation of the desired signal 

across the channels is smooth and is captured in channel/coil sensitivity matrix 

while the spatial variation of the RF interference is dependent on the Fourier 

spectrum of the RF interference. Imaging signal source is closer to the receiver 

channels compared to the RF interference source. These different spatial variations 

can be utilized in beamforming framework to derive a set of virtual channels which 

can effectively steer the acquired signals and separate the interference from the 

desired data. The signal to interference in a virtual channel i with channel 

combination weights wi is given by[6-8],

where RS=E(SSH) is the inter-channel signal correlation and RZ=E(RRH) is the 

inter-channel RF-interference correlation matrices. The channel combination 

weights to generate virtual channels in order of SIR can be generated using 

generalized eigen decomposition10. 

Data Acquisition: Four volunteers were imaged at research 0.5T low-field MRI 

system using a 14-channel research head-and-neck coil with informed consent in 

an IRB approved study. The derated hardware permitted the RF interference from 

the MR equipment room into the magnet room. Thereby, manifesting as zipper 

artifact in the MR images.

Results

RF interference is stationary in the above setup. Therefore, virtual channels are 

estimated using the channel/coil sensitivity matrix (for RS) and noise data (for RZ) 

acquired prior to the imaging data acquisition as shown in Figure 1. The area 

around the zipper spectral peak in noise data is used for the estimation of RZ The 

usage of coil sensitivity and noise data helps in reducing the computational 

complexity during image reconstruction. However, if the RF interference changes 

between the noise data and imaging data or over the imaging data acquisition then 

this would lead to poor interference suppression.

Figure 2 shows qualitative comparison of the proposed virtual channel-based 

method to other virtual-channel-based methods. Channel compression[11] and 

noise whitening[12] based methods are not able to remove the RF interference 

leaving residual zipper artifacts in the image. Noise-whitening method was 

additionally modified to consider the RF interference in the noise data similar to 

the proposed technique removed the zipper artifacts at the expense of image 

quality. The proposed method is able to simultaneously remove artifact and retain 

imaging signal.

Conclusion

Zipper-artifact due to RF interference suppression is presented by projecting the 

data into a subspace that allows better separation between the zipper artifact and 

the desired signal. Initial results demonstrate that our approach outperforms other 

virtual coil techniques by effectively eliminating artifacts while preserving the 

underlying data. Further assessment at other field strengths and imaging contrast is 

warranted.
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Figure 1: Coil sensitivity maps and 

spectrum of noise over 14 channels of 

HNU coil. Peaks in the noise spectra 

corresponds to the RF interference.

Figure 2 : Sum-of-square channel 

combined images for (a) receive channels 

and virtual channels generated using (b) 

Noise Whitening (c) Noise whitening 

tailored for zipper (d) channel 
compression and, (e) Proposed Method. 

Axial T2 FLAIR, two sagittal T2 STIR 

and axial T1 weighted contrasts are shown 

over 4 volunteers, respectively. Zippers 

are marked by yellow arrows.
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Introduction

Traumatic brain injury (TBI) is an acquired disruption usually results from a 

violent blow or jolt to the head from the external force leading altered brain 

structural and functional integration. In-vivo 1H magnetic resonance spectroscopy 

(MRS) provides a non-invasive method to measure neurochemical changes in 

brain for early and accurate characterization of any pathology, and also probe to 

assess therapeutic efficacy of the treatment. This study aims to compare the 

differences in serum biomarkers and neurometabolites alteration between TBI 

patients and healthy control using in vivo MRS. We also examine correlations 

between serum biomarkers [Neurofilament Light (NFL) and Glial Fibrillary 

Acidic Protein (GFAP)] and MRS derived metabolites between TBI patients and 

control.

Methods

TBI patients (n=7) and age/gender matched healthy controls (n=6) with MRS 

derived neurometabolites and neuronal markers NFL and GFAP quantified from 

blood serum samples were included in the study. The neuronal marker levels were 

estimated by Simoa Neurology 2-Plex advantage kit and signal was detected by 

Simoa HD-X analyzer. The concentration of the target in the serum samples was 

interpolated from calibration curve. Single-voxel MEGA-PRESS data was 

acquired from anterior cingulate cortex (ACC) on 3.0T clinical MRI scanner 

(VIDA, Siemens Healthineers, Germany). Structural anatomical images were 

acquired using a T1-MPPRAGE to place spectral voxel. MRS data was acquired 

using a MEGA-PRESS edited pulse involving the collection of two interleaved 

datasets that differ in their treatment of the GABA spin, and MEGA-editing was 

achieved with 20-ms Gaussian editing pulses applied at 1.9 ppm and 7.5 ppm in an 

interleaved fashion1,2,, and following acquisition parameters: were used: 

TR/TE=2260/68ms, Flip-angle =900, voxel-size=30x30x30mm, number of 

averages=128. VAPOR technique3 for water suppression, interleaved OVS 

modules to remove unwanted coherences and minimize signal outside the VOI. An 

unsuppressed water spectrum was acquired as a water reference for eddy current 

correction and water scaling for absolute neurometabolites quantification. 

MRSpa4 and LC-Model5,6 were used for postprocessing and neurometabolites 

quantification of MRS data. Spectra was frequency, phase and eddy current 

corrected. The edited and edit-off spectra was analysed and metabolites were 

quantified using LC-model using a simulated basis set. GABA and Glutamate 

from edit-on and metabolites like NAA, MI, Glx, Cr were analysed from edit-off 

spectra (Fig. 1 b-e). 

Results

Mann-Whitney U test was conducted for NFL and GFAP revealed significant 

differences between the two groups (p value=0.003) (Fig 2). Independent sample 

t-test for metabolite ratios revealed significant differences in NAA/CR+ levels 

between the two groups (p =0.007) (Fig 2). Spearman's rho correlations revealed 

both NFL (rho=-0.635, p=0.020) and GFAP(rho=-0.599, p =0.031) showed 

negative correlation with NAA/CR+ while Nf-L (rho = 0.768, p =0 .002) and 

GFAP (rho=0.768, p=0.002) showing strong significant association(table 1). 

Metabolites including GABA, Glutamate, Cr, Glx, MI did not show a statistically 

significant difference between groups.

Discussion

GFAP’s positive correlation with NFL and negative association with NAA/CR+ 

reflects astrocytic activation concurrent with neuronal compromise, supporting its 

role as a glial injury marker 7,8. NFL’s negative association with NAA/CR+ aligns 

with previous studies linking elevated NFL to axonal damage and neuronal loss in 

TBI9,10. Non-significant findings for other metabolites such as Myoinositol, 

GABA and Glu could be due to the small sample size, which limits statistical 

power. To the best of our knowledge, this is the first study to look for relationship 

between MRS derived metabolites and brain neuronal biomarkers. This study 

provides unique perspective of exploring potential relationship between 

neurometabolites and biomarkers in understanding the underlying mechanism of 

neurochemical alteration at acute stage of evolving brain injury in mTBI.

Conclusion

Our findings support the utility of NFL and GFAP as accessible, non-invasive 

tools for monitoring TBI pathology and highlight the potential of combined 

imaging and biomarker framework could aid in developing treatment strategies 

and prognosticate clinical outcomes.
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Introduction

Alzheimer’s disease (AD) is one of the most prevalent neurodegenerative 

disorders, with progressive cognitive decline and memory loss as its hallmark 

features. AD is characterized by extensive brain atrophy, particularly in memory, 

cognition, and emotional regulation regions. While much attention has been given 

to hippocampal degeneration, the precuneus and fusiform gyrus are emerging as 

regions of interest in the study of AD. The precuneus is involved in self-reflective 

processes, spatial cognition, and episodic memory, while the fusiform gyrus is 

critical for visual processing, particularly face recognition. Despite their known 

functions and vulnerability in AD, the specific links between these brain regions 

and the pathophysiology of Alzheimer’s disease remain understudied. This study 

aims to perform a comprehensive radiomic-based analysis to investigate the 

connection between AD pathology and the precuneus and fusiform gyrus using 

MRI-based radiomic features, to enhance early detection and progression 

prediction in AD. 

Methods

The study utilized T1-weighted MRI scans from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database. A total of 99 Alzheimer’s Disease (AD) 

participants, 149 mild cognitive impairment (MCI) patients, and 134 cognitively 

normal (CN) participants were included, with scans collected at four distinct time 

points: baseline (0 months), 6 months, 12 months, and 24 months. Using the MRI 

data, we extracted 9 radiomic features related to the fusiform and precuneus brain 

regions, then comparing both right and left hemisphere, totaling of 36 features. 

Statistical analysis was performed using the Mann-Whitney U test, followed by the 

Benjamini-Hochberg correction to adjust for multiple comparisons. This approach 

allowed us to identify significant differences in two imaging features, gray matter 

volume (GMV) and cortical thickness (CT) between the AD, MCI, and CN groups, 

specifically in the precuneus and fusiform gyrus. Additionally, machine learning 

models were applied to classify participants into AD, MCI, and CN groups based 

on the extracted features, as well as predict the classification between the groups 

and progression of AD over time. 

Results

In terms of classification performance, the Stacking model that combined Random 

Forest (RF) and XGBoost, the achieved accuracy around 95% for classifying for 

CN vs AD. Random Forest (RF) model achieved an impressive 96% accuracy in 

distinguishing AD vs MCI participants. Other models, including Support Vector 

Machines (SVM) and logistic regression, were also evaluated, but they performed 

less effectively compared to the stacking model. For progression prediction, we 

developed a model to assess the likelihood of cognitive decline from AD patients 

for a period of 24 months, achieving a 77% accuracy. This model showed potential 

for early identification of individuals at high risk of progressing to AD, 

emphasizing the clinical relevance of radiomic features in predicting disease 

trajectory. The statistical analysis confirmed significant differences in GMV and 

CT between AD patients and both MCI and CN participants, with the greatest 

atrophy observed at the 24-month time point, suggesting that the precuneus and 

fusiform gyrus undergo progressive structural changes in AD

Discussion

The results of this study provide strong evidence that radiomic features in the 

precuneus and fusiform gyrus are significantly associated with Alzheimer’s 

pathology. The analysis demonstrates that structural degeneration in these regions 

can be detected early and used as biomarkers for both diagnosis and progression 

prediction. The ensemble-based Stacking model, which combined the strengths of 

Random Forest and XGBoost, outperformed traditional machine learning models 

in terms of classification accuracy, underscoring the importance of using robust 

algorithms for neuroimaging-based diagnostics. Our findings are consistent with 

previous literature suggesting that precuneus atrophy plays a crucial role in AD 

pathogenesis, but we also extend the current understanding by highlighting the 

involvement of the fusiform gyrus in the disease. Furthermore, the 77% accuracy 

achieved in the progression prediction model suggests that radiomic analysis of 

brain regions, such as the precuneus and fusiform gyrus, holds potential for early 

intervention strategies by identifying at-risk individuals. 

In comparison with existing studies, our work contributes novel insights into the 

role of the precuneus and fusiform gyrus in Alzheimer’s disease and underscores 

the utility of radiomic analysis combined with machine learning models for 

improving the accuracy and reliability of AD diagnosis. In our previous study, we 

identified the fusiform gyrus and precuneus as potential imaging biomarkers. 

Building on these findings, we aim to validate these biomarkers with a larger 

dataset and investigate their role in disease progression [1]. For this purpose, ADNI 

has been a key resource for studies have investigating degeneration in the context 

of AD [2], but few have simultaneously considered the role of the fusiform gyrus, 

which is often linked to visual and cognitive processing. Our findings align with 

studies that suggest that fusiform gyrus degeneration is associated with worsening 

cognitive impairment and visual recognition deficits in AD [3]. Additionally, our 

use of machine learning methods to analyze radiomic features expands on prior 

efforts in AI-based neuroimaging research, which have demonstrated high 

classification accuracy for AD detection [4], we moving forward aim to extend our 

study to the genomic data and present a more holistic picture of fusiform and 

precuneus being potential links for Alzheimer’s disease [5]. 

Conclusion

Our study highlights the importance of the precuneus and fusiform gyrus as key 

regions in the pathology of Alzheimer’s disease. We demonstrate that radiomic-

based analysis using MRI-derived features, combined with ensemble machine 

learning models, can achieve high accuracy for both AD classification and 

progression prediction. This approach paves the way for early diagnosis and 

personalized treatment strategies in AD. Future research should focus on 

incorporating multi-modal imaging data (e.g., PET, diffusion MRI) and exploring 

deep learning techniques to further enhance the predictive performance and clinical 

utility of radiomic models. Moreover, longitudinal studies extending beyond the 

24-month period are needed to better understand long-term disease progression and 

refine our predictive models for more accurate and timely clinical applications. 

Reference

[1] S. Sharma, K. Kundal, I. K. Chandok, N. Kumar, and R. Kumar, “Radiomic-based investigation of a potential link 

between precuneus and fusiform gyrus with Alzheimer’s disease,” medRxiv, vol. 2024, pp. 2024-05, 2024. 
[2] Alzheimer’s Disease Neuroimaging Initiative (ADNI), “ADNI Data Collection and Process ing,” 2024. 

[3] J. Smith et al., “Structural MRI Findings in Alzheimer’s Disease,” IEEE Trans. Med. Imaging, vol. 42, no. 3, pp. 278-

290, 2023. 
[4] R. Brown et al., “AI-Based Neuroimaging for AD Classificat ion,” J. Neurobiol., vol. 65, no. 4, pp. 678-689, 2022. 

[5] B. Lee et al., “Genome-wide association study of quantitative biomarkers identifies a novel locus for Alzheimer’s disease 
at 12p12.1,” BMC Genomics, vol. 23, no. 1, p. 85, 2022.

Ishsirjan Kaur Chandok¹, Simran Sharma¹, Kavita Kundal¹, Neeraj Kumar¹, ²*, Rahul Kumar¹*



Differential Effect of Nicotine on Neural Metabolic Activity in Mice

I S M R M  |  I N D I A N  C H A P T E R  2 0 2 5 P R O C E E D I N G S

1NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India; 2Academy of Scientific and Innovative Research, Ghaziabad 201002, 
India

Introduction

Addiction is a neuropsychiatric disorder characterized by continued drug use 

despite its harmful consequences [1]. Tobacco is the second most psychoactive 

drug used worldwide, with the major constituent nicotine, being addictive. Acute 

nicotine increases extracellular dopamine levels in the nucleus accumbens [2], 

affecting glucose utilization in rat brain [3]. However, the effect of nicotine on 

glutamatergic, GABAergic, and astrocytic metabolic activity is not very clear. This 

study evaluated the impact of acute nicotine on the metabolic activity of 

glutamatergic, GABAergic neurons and astrocytes at various doses in the mice 

brain.

Methods

Two-month-old male C57BL/6 mice were divided into two sets. The first set was 

used to understand the impact of nicotine (0.0125, 0.025, 0.25, 1.0 mg/kg and 

shams) on neuronal metabolic activity. The second set was used to study the 

astrocytic metabolic activity with nicotine (0.025 and 2.0 mg/kg). After 15 min of 

subcutaneous nicotine administration, mice were infused with [1,6-

13C2]glucose/[2-13C]acetate using a bolus variable infusion schedule, and at 7/10 

min, respectively, the brain metabolism was arrested using focused beam 

microwave irradiation [4].  The 13C labeling of brain amino acids was measured in 

tissue extracts. The cerebral metabolic rates of glucose oxidation (CMRGlc) and 

astrocytic rate of acetate oxidation (CMRAc(ox)) were determined from the 13C 

label trapped into amino acids [5]. The statistical significance of the impact of 

nicotine on neurometabolic measures was assessed by one way ANOVA. 

Results

There was a significant effect of nicotine on the 13C labeling of metabolites. A 

significant effect of nicotine on CMRGlc(Glu) [F(4,28)=11.31, padj<0.0001], 

CMRGlc(GABA) [F(4,28)=7.1, padj=0.0004], and CMRGlc(Total) 

[F(4,28)=11.09, padj<0.0001] was found in prefrontal cortex (PFC). Post hoc 

analysis showed that CMRGlc(Glu) (0.662±0.055 µmol/g/min) increased 

significantly (padj=0.0100) with nicotine (0.025 mg/kg) when compared with 

sham mice (0.561±0.047 µmol/g/min) in the PFC (Fig. 1), and nicotine (0.0125 

mg/kg) increased CMRGlc(Glu) in the bring it to shippocampus. In contrast, 

nicotine (1.0 mg/kg) decreased CMRGlc(Glu) and CMRGlc(GABA) in PFC, 

cerebral cortex, and hippocampus. Additionally, nicotine (2.0 mg/kg) significantly 

(padj<0.0001) reduced CMRAc(Ox) in the PFC, cerebral cortex, and hippocampus 

when compared with control mice (Fig. 1).

Discussion
13C Label accumulated into GluC4 and GABAC2 from [1,6-13C2]glucose [6] 

provides an excitation and inhibition balance in the brain. The post hoc analysis 

indicated a significant increase in the ratio GluC4/GABAC2 for nicotine (0.025 and 

1.0 mg/kg), suggesting increased excitability of PFC neurons with nicotine. As 

neurotransmitter cycling flux is stoichiometrically coupled with neuronal glucose 

oxidation [7], the findings suggest heightened excitatory activity at a lower dose of 

nicotine (0.025 mg/kg) and decreased excitatory and inhibitory neurotransmission 

with a higher dose of nicotine (1.0 mg/kg). However, the reduction in inhibitory 

synaptic activity with nicotine (1 mg/kg) is more than the excitatory, thus leading 

to higher excitability of neurons.

Conclusion

Nicotine perturbs the excitatory and inhibitory balance in PFC through a gain in 

glutamatergic activity at a lower dose, and a differential suppression in GABAergic 

and glutamatergic function at the higher dose. The PFC excitability was increased 

at both lower and higher doses of nicotine, suggesting a role in the reinforcement 

of nicotine use.
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Introduction
Alzheimer's disease (AD) is a neurodegenerative disorder, and the most 
common form of dementia in older adults. It is characterized by the presence 
of amyloid beta (Aβ) plaques and neurofibrillary tangles with associated 
symptoms like loss of memory, progressive cognitive impairment, and 
behavioral changes. Epidemiological studies suggest that two-thirds of 
American AD subjects are women.2However; it is not clear whether the 
higher prevalence in women is due to longer life expectancy or increased 
susceptibility to AD. This study evaluates the memory, neurometabolism, and 
amyloid burden in young and old females using a 5xFAD mouse model of AD.

Methods
All animal experiments were performed under protocols approved by the 
Institutional Animal Ethics Committee of CSIR-CCMB. 5xFAD Female mice of 
6 and 12 months of age were used for the study. Memory was assessed using 
Y-Maze and Morris Water Maze (MWM) tests. For metabolic analysis, the mice 
were anesthetized with urethane (1.5 g/kg, intraperitoneal), and administered 
intravenously with either [1,6-13C2]glucose for 10 min or [2- 13C]acetate for 
15 min using a bolus rate infusion protocol.Blood was collected from the 
retro-orbital sinus, and mice were euthanized by a focused beam microwave 
irradiation (3kW, 1.2s). The neurometabolites were extracted from the 
cerebral cortex and hippocampus. 1H-[ 13C]-NMR spectroscopy was 
performed to measure the concentrations of 13C 
labeledneurometabolites.6The cerebral metabolic rates of glucose 
(CMRGlc(Ox)) and acetate (CMRAce(Ox)) oxidation were calculated from the 
13C label trapped into amino acids. The Aβ-plaque load in the cerebral cortex 
and hippocampus was assessed by immunohistochemistry.

Results

There was no significant difference in the spontaneous alternation in 5xFAD 
females at 6 and 12 months of age in Y-maze. In MWM, 12-month-old5xFAD 
(84.5±12.2 s, p<0.0001) showed poor learning until the last day of training 
when compared to age-matched Wild type (WT) (41.1±25.4 s). The escape 
latency of 5xFAD mice at 6 months (37.9±31.7 s) was not different from WT 
(46.3±3 s). However, at 12 months, 5xFAD mice (84.0±13.9 s) took 
significantly (p<0.0001) longer time than controls (41.4±28.3 s), indicating 
memory impairment.  The 5xFAD female mice at 6 months exhibited a heavy 
Aβ plaque load that further increased at 12 months. There was a significant 
decrease in the NAA levels (5xFAD: 5.6±0.4 μmol/g; WT: 6.6±0.3 μmol/g, 

p=0.041) and increase in myo-inositol level (8.4±0.8vs6.5±0.6 μmol/g, 
p<0.0001) at 12 months. The 13C labeling of GluC4(5xFAD: 1.3±0.3 μmol/g; 
WT: 1.7±0.6 μmol/g, p=0.005) and GABAC2 (0.14±0.3 vs. 0.17±0.2 μmol/g, 
p=0.025) was also significantly reduced (Fig. 1). There was no significant 
difference in CMRGlc(Glu) and CMRGlc(GABA) at6 months in the cerebral 
cortex and hippocampus in female 5xFAD mice. The cerebral metabolic rate 
of glucose oxidation in glutamatergic neurons (CMRGlc(Glu))was decreased 
in the cerebral cortex (5xFAD: 0.146±0.035 μmol/g/min; 
WT:0.193±0.033μmol/g/min, p=0.011) and hippocampus (0.126±0.023 
vs0.180±0.020μmol/g/min, p=0.0002) of 12- month-old 5xFAD females (Fig. 
2). Similarly, in GABAergic neurons, CMRGlc(GABA) was significantly reduced 
in the cerebral cortex (0.033±0.008vs0.041±0.008μmol/g/min, p=0.048) and 
hippocampus (0.035±0.006vs 0.049±0.007μmol/g/min, p=0.0007). 
CMRAce(Ox) was not significantly different in the cerebral cortex 
(0.136±0.017 vs 0.129±0.009 μmol/g/min, p=0.376) and hippocampus 
(0.143±0.011
vs0.140±0.008 μmol/g/min, p=0.562).

Discussion

The cognitive function of 5xFAD female mice was intact till 6 months of age 
but was impaired at 12 months. The neurometabolite homeostasis was 
unperturbed at 6 months of age. At 12 months, 5xFAD mice showed reduced 
NAA levels, suggesting decreased neuronal viability and increased myo-
inositol points towards increased glial activity or population. However, 
unperturbed CMRAce(Ox) suggests no change in the astroglial activity in 12-
month 5xFAD females.  Despite having amyloid plaques, there was no change 
in memory and cerebral glucose metabolism, suggesting intact synaptic 
activity in 6-month-old 5xFAD female mice.

Conclusion

At younger ages, female 5xFAD mice do not exhibit any AD phenotype. However, 

there was deterioration in cognition and neurometabolism in age-matched 5xFAD 

males (data not shown). At older ages, females exhibited impairment in memory 

and neurometabolism, which was very similar to that seen in males. The 

presentation of AD only at older ages in females suggests a protective mechanism 

in play at younger age.
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Introduction

Epilepsy is a neurological disorder associated with 

high morbidity and psychosocial impact. Evidence 

exists in Medical Literature suggesting neuronal loss 

or neurodegenerative phenomenon in patients with 

Epilepsy. However, this may be visually apparent 

late in the disease when other manifestations may 

occur. Hence, we planned a pilot study where we 

utilised Artificial Intelligence (AI) based volumetric 

assessment of brain patients suffering with epilepsy 

to establish its relationship with brain atrophy, hence 

predicting prognosis. 

Methods

One hundred patients with epilepsy and 100 age & 

sex matched subjects underwent MRI brain with 

subsequent brain volumetric analysis using AI based 

tool. Patients with seizures due to organic caused 

were excluded from the study. 

Results

The age range of patients was 30-50years with equal 

number of males & females. At least 55 out of 100 

patients revealed some degree of reduced brain 

volume compared to controls. 

Conclusion

Epilepsy is associated with brain atrophy and 

neurodegenerative process, hence serial artificial 

intelligence based volumetric brain analysis should 

be part of the routine imaging protocol for Epilepsy 

by MRI Brain for its early detection and instituting 

aggressive management & psycho-counselling. As 

brain atrophy is a long-term complication of epilepsy 

which often escapes visual detection in early stage, 

AI based volumetric brain analysis may not only aid 

in better management but may also be used to 

evaluate the effect of drugs retarding or halting the 

progression of brain atrophy objectively.

Prof. (Dr.) Rajul Rastogi



Introduction

Glioblastoma (GBM) is a highly aggressive brain tumor with limited survival rates despite 

extensive treatment [1]. Pharmacokinetic (PK) modeling of dynamic contrast-enhanced MRI 

(DCE-MRI) provides information about tumor vascularity and perfusion [2],[3],[4]. 

However, selecting an optimal PK model remains challenging due to variations in 
complexity and fit across tumor regions. This study aims to apply a parsimonious model 

selection approach using the Akaike Information Criterion (AIC)[5],[6] on five PK models 

to identify the model that best balances fit and simplicity. After segmenting tumor regions 

using the automated nnUNet algorithm [7],[8], the models were evaluated across these 

regions to optimize parameter estimation in DCE-MRI.

Methods

This retrospective study included MRI datasets from 56 GBM patients acquired using a 3T 

Tim Trio MR scanner at the University of Pennsylvania and shared with TCG CREST (data 
sharing ID: RIS76150). All data usage and analyses were conducted in accordance with 

ethical guidelines and with approval from the relevant institutional review boards at both 

institutions. Tumors were segmented into enhancing, non-enhancing, and edema regions 

using the automated nnU-Net algorithm [7],[8]. DCE-MRI data from each segmented region 

were fitted to five pharmacokinetic (PK) models: Non-linear Tofts, Extended Tofts, Shutter-
Speed, Two Compartment Exchange (2CXM), and Three-Site Two-Exchange (3S2X). Each 

model estimated parameters, including the volume transfer constant (Ktrans), extracellular 

volume fraction (Ve), and reverse reflux rate constant (Kep) [9],[10],[11],[12]. Additional 

parameters were generated depending on the model: plasma volume fraction (Vp) from the 

Extended Tofts, 2CXM, and 3S2X models; water molecule half-life inside cells (𝛕i) from 
the Shutter-Speed and 3S2X models.

Following PK model fitting at each voxel, an R² map was generated (Fig. 1), and the Akaike 

Information Criterion (AIC) & R-squared(R²) values were calculated [6][13]. The model 
with the lowest AIC was selected for each voxel, indicating the best fit. A parsimonious 

model was formed by aggregating the selected best-fit models across the dataset. Finally, 

mean AIC and R² values were calculated for each model and the parsimonious model within 

each region (enhancing, non-enhancing, and edema) for each patient.

Akaike Information Criterion (AIC):

where: N - number of observations, yi - observation at time i, Ct(i) - associated fitted value 

at time i, and p - number of parameters in the model

Results

Parsimonious Model Selection from PK Models with Parameters Ktrans, Ve, and Kep: All 

PK models containing Ktrans, Ve, and Kep are compared within the enhancing region of the 

tumor (Fig.1). The Parsimonious Model provided a superior performance to individual 

models in the enhancing region. Among the five models, the Extended Tofts and 2CXM 

models showed the lowest mean AIC and highest mean R-squared value (Fig. 2a and b). A 

similar trend was observed in the non-enhancing (Fig. 3a and b) and edema regions as well.

Parsimonious Model Selection from PK Models with Parameters Vp:

Only the Extended Tofts, 2CXM, and 3S2X models, which include the parameter Vp, were 

compared in the enhancing region (Fig. 2c and d). The Parsimonious Model surpassed the 

performance of individual models in the enhancing region. Among the three models, the 

Extended Tofts and 2CXM had the lowest mean AIC and highest mean R-squared value 

(Fig. 2c and d). This trend was similarly noted in the non-enhancing (Fig.3c and d) and 
edema regions .

Parsimonious Model Selection from PK Models with Parameters 𝛕i: Only the Shutter-Speed 

and 3S2X models, including the τi parameter, were compared in the enhancing region (Fig. 

2e and f). The Parsimonious Model surpassed the performance of individual models. 
Shutter-Speed had the lowest mean AIC and highest mean R-squared value among the two 

models (Fig. 2e and f). This trend was also observed in the non-enhancing (Fig. 3e and f) 

and edema regions .

The results indicate that AIC-based parsimonious model selection can effectively optimize 

PK model performance across distinct tumor regions. The Parsimonious Model consistently 

achieved superior performance, showing optimal results not only in the enhancing region 

but also excelling in the non-enhancing and edema regions.

Discussion

GFAP’s positive correlation with NFL and negative association with NAA/CR+ reflects 
astrocytic activation concurrent with neuronal compromise, supporting its role as a glial 

injury marker 7,8. NFL’s negative association with NAA/CR+ aligns with previous studies 

linking elevated NFL to axonal damage and neuronal loss in TBI9,10. Non-significant 

findings for other metabolites such as Myoinositol, GABA and Glu could be due to the 

small sample size, which limits statistical power. To the best of our knowledge, this is the 
first study to look for relationship between MRS derived metabolites and brain neuronal 

biomarkers. This study provides unique perspective of exploring potential relationship 

between neurometabolites and biomarkers in understanding the underlying mechanism of 

neurochemical alteration at acute stage of evolving brain injury in mTBI.

Conclusion

Our findings support the utility of NFL and GFAP as accessible, non-invasive tools for 

monitoring TBI pathology and highlight the potential of combined imaging and biomarker 

framework could aid in developing treatment strategies and prognosticate clinical outcomes.
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Introduction

Quantitative susceptibility mapping (QSM) is an MRI-based technique for quantifying 

magnetic susceptibility in tissues, offering precise measurement of spatial variations in 

susceptibility. This capability enables a wide range of applications, including tissue 

differentiation based on magnetic properties such as iron and calcium content. Traditional 
QSM reconstruction methods, including thresholded k-space division1, and calculation of 

susceptibility through multiple orientation sampling (COSMOS)2, are computationally 

intensive and often limited by the ill-posed nature of the dipole inversion problem. Recent 

advancements in deep learning have introduced opportunities to overcome these limitations. 

Data-driven models like DeepQSM3 and QSMNet4 have demonstrated improved 
reconstruction accuracy and robustness. 

Methods

This study presents a Variational Autoencoder (VAE) U-Net architecture for robust QSM 

reconstruction that utilizes a probabilistic framework enabling superior generalization to 

unseen datasets, outperforming state-of-the-art models even in limited data settings. By 

incorporating UNet-like skip connections across the encoders and decoders of VAE, the 

model better captures features at multiple scales and retains the fine anatomical details that 

could otherwise have been lost. The model was trained using input local fields paired with 

COSMOS ground truth, with a physics-informed loss function combining reconstruction 

loss quantified using mean squared error (MSE), KL divergence, and dipole loss. 

Reconstruction Loss :  Lossrecon    =   

KL Divergence Loss :  Losskl         = 

Dipole Loss : Lossdipole  = 

Total Loss :  Losstotal    =

where χ denotes susceptibility, σ and μ represents variance and mean respectively, F is the 

Fourier transform operator, D is the dipole kernel and δ is the local field, and λ denotes the 

weight of each loss term.The training was performed in both sufficient as well as limited 

data settings using the dataset shared by Yoon et al.4.  The trained model was validated on 

the same dataset as well as on another benchmark dataset5. The model was assessed using 

structural similarity index measure (SSIM), peak signal to noise ratio (PSNR), normalized 

mean squared error (NMSE), and high frequency error norm (HFEN)6 to quantify structural 

fidelity, noise reduction, and preservation of high-frequency details.

Results
Comparative studies of the proposed VAE-UNet were performed with state-of-the-art 

models like QSMNet, xQSM7, and 3D-UNet as in DeepQSM and the corresponding 

performance metrics were summarized in Table 1 and 2. A visual comparison of the 

proposed VAE-UNet with COSMOS is shown in Figure 1. Our experimental studies 

demonstrate that the VAE-UNet model efficiently balances accuracy and generalizability in 

QSM reconstruction.

Table 1: Quantitative metrics (mean ± std) of the reconstructed susceptibility maps from the 

model trained with maximum data and evaluated on unseen data

Table 2: Quantitative metrics (mean ± std) of the reconstructed susceptibility maps from the 

model trained with limited data and evaluated on unseen data

Discussion

Unlike deterministic models like QSMNet or xQSM, our VAE-UNet incorporates a 

probabilistic framework via the latent space. Probabilistic modeling approaches, such as 
variational inference, are largely unexplored in QSM reconstruction. This study underscores 

their capability to capture uncertainty and complex latent representations, paving the way for 

further development. Our model exhibits superior generalizability which is critical for 

deployment in diverse clinical and research contexts where acquisition protocols vary. 

Conclusion

Our study shows that probabilistic modeling using VAE-UNet is a promising direction for 

QSM reconstruction. The model achieves accurate, robust, and generalizable reconstructions 

by effectively leveraging the probabilistic framework and incorporating physics-based 

constraints. Accurate susceptibility mapping can improve the diagnosis and monitoring of 

neurodegenerative diseases (e.g., multiple sclerosis, Parkinson’s, and Alzheimer’s) and 

conditions like stroke. The model’s robustness under sparse data conditions makes it 
particularly suitable for real-world clinical applications where high-quality data are often 

scarce. Generalizability across datasets highlights its potential for use in multi-center 

studies, reducing variability across imaging protocols.

Figure 1: A comparison between COSMOS maps, reconstructed QSM (axial view) and 
difference images (with respect to COSMOS) of the sample test volume on unseen data 

when trained with maximum data. The NMSE (%) of the test volumes with respect to 

COSMOS are given.
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Introduction

Flexible RF coils are at the forefront of MRI research, offering enhanced patient comfort 

and adaptability to various anatomical regions [1]. Recent studies have explored innovative 

designs to improve coil flexibility [2,3]. This study examines a flexible 9 cm MRI surface 

coil loop constructed with stranded wires, comparing its performance to a conventional rigid 
single wire coil of identical dimensions. The aim of this work is to explore the potential of 

stranded wire designs in advancing flexible MRI coil technology.

Methods
Two 9 cm diameter receive coils (Figure 1) were fabricated to compare SNR, impedance 

matching, active detuning, and Q-factors [4,5,6]. Both coils were optimized for operation at 

a Larmor frequency of 123.2 MHz (3T Siemens Healthineers scanners, Erlangen, Germany). 

The rigid coil was constructed using copper wire (d = 1 mm) with enameled coating, while 

the flexible coil utilized silver coated copper stranded wires with PTFE insulation (22 AWG 
RS Pro 841-7392). For the bench and MR tests a saline container phantom filled with 5 g/L 

NaCl and doped with Gadolinium-based contrast agent as shown in Figure 2 was employed. 

Unloaded and loaded Q values were measured at the Larmor frequency using a double-loop 

probe, with the coils connected to their interfacing networks (see Fig. 1) and 50 Ω 

terminated. The interfacing circuits included fuses, active and passive decoupling circuits as 
shown in the schematic in Figure 3. Coaxial cables connecting the coils to the scanner were 

equipped with floating cable traps [7]. MR imaging tests consisted of a GRE pulse sequence 

with parameters set to a TE of 10 ms, TR of 300 ms, slice thickness of 3 mm, resolution of 

1×1 mm², matrix size of 256×256, and a bandwidth of 33.28 kHz. To evaluate B1+ 

distortion, a Saturated Turbo Flash B1 mapping sequence was utilized.

Results

The unloaded Q of the flexible coil and the standard coil were 36 and 31, respectively. 

Similarly, the loaded Q was 17 for both the flexible coil and the standard coil, resulting in Q 
ratios of 2.1 and 1.8, respectively. The measured return losses were -18 dB for the flexible 

coil and -22 dB for the standard coil. Similarly, the active decoupling isolation were -17 dB 

for the flexible coil and -21 dB for the standard coil. As presented in Figure 4, the measured 

SNR values in a 2D circular ROI were 560 and 552 for the flexible and the standard coil, 

respectively. B1+ distortion shown in Figure 5 was measured using the scanner’s body coil 
with and without the receive coil present on the phantom. Results show 3% B1+ difference 

for the flexible coil and 9% for the standard coil, indicating good decoupling from the body 

coil in both cases. 

Discussion
The findings indicate that the flexible coil made from stranded wire performs similarly to 

the standard rigid copper wire coil and can therefore be used for applications where 

flexibility of the coil conductor is beneficial, in particular, where strong intersubject 

variability of the targeted anatomy is expected. Future work will focus on optimizing 

interfacing elements to minimize losses and miniaturize the interfacing electronics, with 
subsequent in vivo testing planned to validate the performance improvements.

Conclusion

This study highlights that 9 cm flexible stranded wire receive coils offer no performance 

disadvantages compared to standard copper conductor coils at 3T. These findings suggest 

that stranded wire coils are a promising option for flexible MRI surface coils.

Reference

1.Darnell D, Truon g TK, Song AW. Recent Advances in Rad io-Frequency Coil Technolo gies: Flexible, Wireless , 

and Integrated Coil Arrays. J Magn Reson Imaging, 2022.

2.Nohava L, et al. Flexible Multi-Turn Multi-Gap Coaxial RF Coils: Design Concep t and Imp lementation for 

Magnetic Resonance Imaging at 3 and 7 Tesla. IEEE Trans Med Imaging, 2021.

3.Obermann Michael MSc; Nohava Lena PhD;et al. Panoramic Magnetic Resonance Imaging of th e Breast With a 

Wearable Coil Vest. Invest igative Rad iolo gy 58(11):p 799-810, 2023. 

4.Kumar, A., Edels tein, W. A. & Bottomley, P. A. Noise figu re limits for circular lo op MR coils. Magn. Reson. 

Med. 61, 120 1–1209, 200 9.

5.Mispelter J, Lupu M, Briguet A, et al., NMR Probeheads for Biophysical And Biomed ical Experiments. Imperial 

College Press, 2006.

6.Roemer, P. B., Edels tein, W. A., Hayes, C. E., Souza, S. P. & Mueller, O. M. The NMR Phased Array. Magn. 

Reson. Med. 16, 192–225, 1990.

7.Seeber, D.A., Jevt ic, J. and Menon, A., Floating sh ield current suppression trap. Concep ts Magn. Reson., 21B: 26-

31, 2004.

 

 Fig. 1: Standard rigid copper wire coil (left) and flexible stranded wire coil (right) and their 

interfacing networks.

 

Fig. 2: Measurement setup using the flexible coil on the container phantom with a size of 

18.5 x 14.5 x 25.2 cm³.

 

 

 Fig. 3: Schematic of the interface board consisting of the coil ports (P1 and P2), a fuse (F1), 

tuning and matching capacitors (CTM,CM1,CM2), detuning elements (Cd and Ld), crossed 

diodes (D1,D2), a PIN diode (PIN1), RF chokes (ch11,ch12,ch13), and a DC block capacitor 

(C11).

  

  Fig. 4: SNR comparison on a container phantom. The axial slice and the coils are 
positioned at the phantom’s center. 

 Fig . 5: B1+ change with and without the receive respective coil placed on the 

container phantom. The slice and the coils are positioned at the phantom’s center. 

The pixel intensity ranges from 0 (white) to 4095 (black), a value of 2048 

corresponds to 0% change.
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Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disorder 

characterized by cognitive decline and memory impairment, affecting 

millions worldwide. Early detection is crucial for implementing effective 

interventions that can slow disease progression. Recent advancements in 

neuroimaging, particularly multi-parametric magnetic resonance imaging 

(MRI), have provided detailed insights into brain structure and function, 

offering potential biomarkers for early AD detection. However, the high 

dimensionality and complexity of neuroimaging data present significant 

challenges in analysis and interpretation. To address these challenges, 

machine learning techniques, including Radial Basis Function Neural 

Networks (RBFNN), have been explored for their ability to model 

complex, nonlinear relationships in data. This study aims to integrate 

advanced neuroimaging biomarkers with hybrid metaheuristic algorithms 

and RBFNN to enhance the accuracy and efficiency of early AD 

detection.

Methods

Data Acquisition: We utilized publicly available datasets from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI), comprising 

structural and functional MRI scans of healthy controls, individuals with 

mild cognitive impairment (MCI), and AD patients. Pre-processing steps 

included normalization to standardize image intensities, segmentation to 

isolate regions of interest, and extraction of features such as cortical 

thickness, volumetric measurements, and diffusion tensor imaging 

metrics.

Feature Selection: Given the high dimensionality of the extracted 

features, we employed a hybrid feature selection approach combining 

Exponential Mutated Swarm Optimization (EMSO) and Harris Hawk 

Optimization (HHO). EMSO is effective in exploring the search space to 

identify global optima, while HHO provides robust mechanisms for 

exploiting promising solutions. This combination leverages the strengths 

of both algorithms to identify the most informative features for 

distinguishing between healthy, MCI, and AD subjects.

Surrogate Modelling with RBFNN: The selected features served as 

inputs to an RBFNN, which is well-suited for modelling nonlinear 

relationships due to its universal approximation capabilities. The RBFNN 

parameters, including the number of neurons and the spread parameter, 

were optimized using the hybrid EMSO-HHO algorithm to enhance 

predictive performance.

Model Evaluation: We assessed the model's performance using metrics 

such as accuracy, sensitivity, specificity, and the area under the receiver 

operating characteristic curve (AUC). A 10-fold cross-validation strategy 

was implemented to ensure the robustness and generalizability of the 

results.

Results

 The hybrid EMSO-HHO algorithm effectively reduced the feature set, 

identifying key neuroimaging biomarkers associated with early-stage 

AD. The optimized RBFNN model achieved high accuracy, better 

sensitivity, specificity and AUC. These results indicate a significant 

improvement over traditional feature selection methods and standard 

neural network models

Discussion

Our findings underscore the potential of integrating advanced 

neuroimaging biomarkers with hybrid metaheuristic algorithms and 

RBFNN for early AD detection. The hybrid feature selection method 

effectively addresses the challenges of high-dimensional data, while the 

RBFNN provides a powerful tool for modelling complex relationships 

inherent in neuroimaging data. This approach aligns with recent studies 

that have explored machine learning frameworks for early MRI-based 

AD diagnosis, highlighting the importance of combining multiple 

modalities and advanced algorithms to improve diagnostic accuracy. For 

instance, Zhang and Shen proposed a multi-modal multi-task learning 

framework that jointly predicts multiple regression and classification 

variables in AD, demonstrating the efficacy of combining different data 

sources and learning tasks. Our study builds upon this foundation by 

incorporating a hybrid feature selection method and RBFNN, offering a 

novel approach to early AD detection.

Furthermore, the use of hybrid metaheuristic algorithms for feature 

selection addresses the limitations of traditional methods, which may 

struggle with the high dimensionality and complex interactions present in 

neuroimaging data. By leveraging the exploration capabilities of EMSO 

and the exploitation strengths of HHO, our approach effectively 

identifies the most informative features, enhancing the performance of 

the subsequent RBFNN model.

Conclusion

This research demonstrates that combining advanced neuroimaging 

biomarkers with hybrid metaheuristic algorithms and RBFNN 

significantly enhances the early detection of Alzheimer's disease. The 

methodology not only improves predictive accuracy but also ensures 

computational efficiency and reproducibility. These advancements hold 

substantial clinical relevance, offering a robust tool for early AD 

diagnosis, potentially leading to better patient outcomes and more 

effective intervention strategies. Future work will focus on validating the 

model with larger, multi-centre datasets and exploring its applicability to 

other neurodegenerative disorders.
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Introduction

Neurodegenerative disorders is a group of 

debilitating and progressive neurological diseases 

like Alzheimer's disease, Parkinson’s disease, etc. 

The diagnosis is often based on clinical criteria 

following exclusion of organic disorder. These 

diseases are associated with neuronal loss evident 

in form of grey and while matter volume reduction 

which is visually apparent on brain MRI late in the 

disease. Hence, we conducted pilot study to assess 

the volumetric alterations in brain on MRI using 

Artificial Intelligence (AI) based tools. 

Methods

Twenty patients with clinical neurodegenerative 

disease and 20 age & sex matched controls 

underwent MRI brain with subsequent volumetric 

analysis using AI based tool. 

Results

Age range of patients was 40-50years with only 

males in our study group. All the patients revealed 

variable but diffuse volumetric loss of grey and 

white matter on AI based volumetric analysis of 

brain compared to controls which was apparent 

visually in only 6 out of 20 patients. 

Conclusion

Artificial Intelligence Based Volumetric Brain 

Analysis on MRI in neurodegenerative disease can 

objectively identify neurodegeneration early in the 

course of disease allowing time for institution of 

aggressive medical treatment and psycho-

counselling. It helps in detecting volume loss of 

grey & white matter before it becomes visually 

apparent, also allowing objective assessment of the 

various drugs in their role of retarding or cessation 

of the progression of neurodegenerative disease.
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Introduction

Subjective tinnitus is the perception of sound that occurs without an 
external auditory source, often known as a sound hallucination. Tinnitus 
affects 14.4% of adults and the elderly worldwide. [1,2] Subjective 

tinnitus, experienced by most tinnitus sufferers, is an internal auditory 
condition without a physical sound source. Its exact causes are complex 

and not entirely known, involving potential neuroplastic changes in the 
auditory pathway. While there is no definitive cure yet, treatments like 
sound therapy and cognitive-behavioral therapy offer symptom relief for 

many. Ongoing research is promising and aims to uncover more effective 
treatments. Severity of tinnitus associated with changes the gray matter in 

auditory cortex, amygdala and parahippocampal regions and other non-
auditory regions.

In this study we find out how severe tinnitus patients brain structure 

changes as compared to non-severe tinnitus patients which caused the 
worsen effects to suffers.

Methods
In this study we Included 58 subjective tinnitus patients. In this patients 

group comprised 36 males and 22 females, with an average age of 39.07 ± 
13.95 years we divided two subgroups severe sufferers (35), and non-

severe sufferers (23) based of their respective THI (Tinnitus handicap 
Inventory) scores. All the Patients has been recruited from SGPGI, 
Lucknow. All patients have informed written consent of the study and 

shown no pathology related to ear or brain.

T1 MRI data was acquired using a 3 T Siemens MRI scanner at the 
CBMR with the following parameters: 192 slices; TR of 1900 ms; TE of 

2.44 ms; flip angle of 12°; slice thickness of 1.00 mm; matrix dimension 
224x256; and isotropic voxels at 1 mm³ resolution. Surface-based 
morphometric analyses and cortical estimation were performed using the 
Computational Anatomy Toolbox (CAT12, and SPM12). [3]

Fractal Dimension (FD): Measures the complexity of brain folding by 
analyzing surface area resolution and geometric patterns. Gyrification: 

Quantifies the degree of cortical folding by comparing the surface area of 

gyri and sulci to the brain's outer surface. Sulcus Depth: Assesses the 

depth of the brain's sulci, indicating the degree of cortical folding and 
complexity. Cortical Thickness: Measures the thickness of the cerebral 
cortex, reflecting structural and functional aspects of the brain. 

Results
Fractal Dimension: In the left hemisphere, fractal dimension (FD) 
analysis revealed increased FD in the medial orbitofrontal cortex and the 

banks of the superior temporal sulcus (bankssts), while decreased FD was 
observed in the superior parietal region. In the right hemisphere, increased 

FD was identified in the pars triangularis and temporal pole, whereas 
decreased FD was noted in the precentral, paracentral, bankssts, and 
transverse temporal regions. 

Gyrification: In the left hemisphere, increased gyrification was observed 
in the insula, while decreased gyrification was noted in the pars 

opercularis, isthmus cingulate, and frontal pole. In the right hemisphere, 
increased gyrification was found in the precentral and postcentral regions. 
Sulcus Depth: In the left hemisphere, increased sulcal depth was 

observed in the middle temporal and rostral anterior cingulate regions. 
Decreased sulcal depth was noted in the cuneus region. 

Thickness: In the left hemisphere, increased cortical thickness was 
observed in the lateral occipital, transverse temporal, lingual, and cuneus 
regions. In the right hemisphere, increased cortical thickness was 

identified in the pericalcarine, lateral occipital, and cuneus regions. 
Decreased cortical thickness was noted in the parahippocampal region.

Discussion
In conclusion, this study found significant structural brain variations 

between severe and non- severe tinnitus patients, including changes in 
fractal dimension (FD), gyrification, sulcus depth, and cortical thickness 

in both hemispheres. The frontal pole, with decreased gyrification, 
indicates disruptions in cognitive and emotional regulation, whereas the 
medial orbitofrontal cortex, with increased FD, represents abnormalities 

in emotional processing related to tinnitus severity. The temporal pole 
has increased FD, which is associated with auditory and emotional 

processing, whereas decreased FD in the superior parietal suggests 
impaired sensory integration and spatial processing related to tinnitus. In 

the insula, increased gyrification implies changes in sensory and 

emotional processing, whereas decreased gyrification in the cingulate 
indicates disruptions in emotional regulation and cognitive control. 
Structural changes in the paracentral and precentral gyri, defined by 

decreased FD and cortical thickness, point to potential tinnitus-related 
motor and sensory processing impairments. Increased cortical thickness in 

the lateral occipital, lingual, and cuneus regions indicates changes in 
visual processing and integration, whereas increased thickness in the 
pericalcarine region indicates alterations in both visual and sensory 

processing. [4] These findings indicate that severe tinnitus causes large 
neuroplastic changes in the brain, particularly in areas associated to 

auditory processing and emotional regulation, are possible indicators of 
tinnitus severity and could be used as biomarkers to assess its impact.

Conclusion

This study provides understanding on the neurological foundations of 
tinnitus, which could help guide the development of more specific and 
effective therapies.
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Introduction

Lymphangiography plays a vital role in the diagnosis and management of various clinical 

areas by mapping the lymphatic anatomy. [1,2] Limitations of conventional methods such 

as X-ray or CT Lymphangiography and Lymphoscintigraphy include the use of ionizing 

radiation and poor spatial resolution and invasive nature. In addition to the risk of intra-
lymphatic inflammatory reaction with the use of ethiodized oil, the procedure is time-

consuming and invasive. Moreover, iodinated contrast agent reduces the feasibility in 

patients with renal impairment. [3-6] Non-contrast MRI on the other hand, has superior soft 

tissue resolution and can be advantageous in delineating the complex and variable anatomy 

of the lymphatics without the need for intervention. The thoracic duct is the largest 
lymphatic vessel in the body, and highly variable in anatomy, and differs in composition 

differs from the peripheral and intestinal lymphatic vessels. [7] To improve the sensitivity 

in visualization of the central lymphatics, the relaxation properties of Chyle, an enriched 

lymph, originating from the small intestine were measures and the sequence parameters 

were optimized. Preliminary results from this work are presented here. 

Methods

Informed consent was obtained from the participants in the study, and the local institutional 

review board approved the study as part of a larger ongoing research study.The Chyle 
sample was obtained from one patient with a history of Chylothorax and underwent 

ultrasound-guided aspiration. The fluid was collected in a container and subjected to MR 

relaxometric measurements within 2 hrs. of sample collection. The sample was stored in a 

refrigerator at 4oC and measurements were repeated after 24 hrs. The sample was allowed 

to thaw for 45 minutes before subjecting it to relaxometric measurements. T1 and T2 values 
were measured on a Philips MR 5300 1.5T system (Best, Netherlands) using standard 

relaxometry techniques provided by the manufacturer (see Figure-1). Based on the T1 and 

T2 values measured from the chyle sample, the TE values of a conventional 3D MRCP 

technique were modified to ensure sufficient background suppression and applied in 9 

healthy volunteers and one patient with chylothorax. Qualitative assessment for the 
visualization of the lymphatic vessels was performed by comparing the curved maximum 

intensity projections (MIP) with conventional lymphangiography methods in all the 

subjects. 

Results

Figure 2 shows the photograph of the Chyle sample collected. The sample had slight 

contamination from blood during the aspiration, which gave it a pink coloration. T1 and T2 

of the Chyle was measured to be 2814.6+/- 79.4 ms and 1181.2+/- 137.5 ms respectively 

(see Figure-2) and it was consistent between the two timepoints of measurement. Based on 
these values, the 3D MRCP sequence was modified as follows, keeping in mind the need to 

balance the contrast–SNR–scan time (Figure 3): TE was increased from 400 ms to 600 ms, 

TR from 978 to 2500 ms and TSE factor of 185. Any further increase in TE resulted in an 

increase in scan time. The FOV was increased to cover the extent of the thoracic duct, and 

the overlapping slices allowed for mapping the continuity of the vessel. Higher in-plane 

resolution allowed for multi-planar reformation in orthogonal orientation, without loss in 

duct conspicuity. Qualitative evaluation of the curved MIP in the patient and the volunteers 

showed that the optimized sequence consistently provided better visualization (vs. 

conventional technique) of the lymphatic vessels in the thoracic region in all cases. Figure 3 
shows the curved MIP of the thoracic region in the conventional and the optimized 

sequence (MRCP_modified) from two volunteers. Figure 4 shows the images from the 

patient with chylothorax. Lymphatic vessels imaged using fluoroscopy in the thoracic 

region show their tortuosity and their small calibre. These vessels are completely missed in 

the conventional T2 mDIXON images. On the other hand, the lymphatic vessels could be 
clearly seen in the optimized sequence (MRCP_modified).  While this work presents 

preliminary results from an improved lymphangiography sequence, further, systematic 

study may be warranted to explore room for further optimization. 

Conclusion

In this work, we measured the T1 and T2 properties of chyle which enabled optimization of 
an existing 3D technique for improved visualization of central lymphatics. T1 and T2 

values of Chyle showed that a longer TE was possible, which provided sufficient signal 

from Chyle in the lymphatic ducts while significantly suppressing the signal from the 

background tissue. This, in turn, helped in conspicuous visualization of the central 

lymphatics. 
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Figure 4: Chyle leak in a 43-year-old woman with chylous pleural effusion. Thoracic duct on a fluoroscopic 
image shows abnormal contrast agent flow (yellow arrows), On the modified Lymphangiogram protocol, the 

severity of the chylous pleural effusion is better appreciated (Blue arrows) and mapping of the thoracic duct 

(pink arrow) is better seen on the modified MRI sequence.

Figure 5: shows representative images from two Volunteers of the 3D_MRCP_Modified sequence, Conventional 
T2w_mDIXON sequence and the Maximum Intens ity Projection with Curved Planar Reformation of the thoracic duct. 

The duct conspicuity and extent are well appreciated on the modified protocol in comparison to the conventional 

sequences (Yellow arrows). Moreover, artifacts aris ing from the medias tinal structures and poor background 
suppression obscures the thoracic duct in the conventional protocol (Blue arrow)
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Introduction

Spinocerebellar ataxia type 12 (SCA12), degenerative neurological condition, 

prevalent in the North Indian population, is linked to CAG repeat expansions (>43 

repeats) in the PPP2R2B gene, causing cerebello-cortical atrophy. It primarily 

appears as early-onset action tremors in the upper extremities, along with gait 

ataxia, speech disturbances, head tremors, and autonomic dysfunction [1]. 

Automatic diagnosis of SCA12 using MRI is limited and need attention of 

Machine Learning (ML) community. Thus, the aim of this study is to identify 

volumetric changes in brain structures in SCA12 subgroups by leveraging ML for 

the analysis of deformation fields extracted from structural MRI (sMRI) scans.

Methods

With informed consent from subjects and ethical approval, MRI volumes 34 

SCA12 and 34 Healthy controls (HC) age-balanced were acquired at AIIMS, New 

Delhi, using a 3T Philips Ingenia scanner with a 3D Turbo Field Echo sequence 

using parameters as mentioned in [2]. Jacobian determinants (JB) were obtained 

using segmentation pipeline as mentioned in [2]. It captures the local change in 

volume of each voxel. Using JB, the present work used Tensor-based 

morphometry (TBM) for identification of the atrophic regions that may help to 

differentiate SCA12 patient from HC. The JB volumes were co-registered and 

parcellated using two brain atlases (Automated Anatomical Labelling atlas 3 

(AAL3) [3] and Neuromorphometrics [4]). Both atlases are designed to study 

whole brain regions. Co-registered JB volumes were used for TBM to identify 

clusters of localized shape variations and volumetric changes. We used both 

contrasts (SCA12 < HC using [-1 1] and SCA12 > HC using [1 -1]) to conduct 

TBM. Subsequently, the identified values of the voxels were utilized as features, 

which were then used to train ML-based classifiers, namely Logistic regression 

with L1 regularization (LR_L1) [5] and Support Vector Machine (SVM) [6]. The 

performance of the classifiers was assessed through the leave-one-out cross-

validation (LOOCV) approach. The hyper-parameters were tuned for both the 

classifiers and the best set of hyper-parameters were used. `

Results

Table 1 shows the classification results after classification for both the atlases. 

Table 1 demonstrates that LR_L1 achieved 91.18% accuracy for classifying 

SCA12 from HC for SCA12 > HC contrast. The superior performance of LR_L1 

compared to SVM can be attributed to its ability to induce sparsity, effectively 

reducing the irrelevant features. Furthermore, to trace the regions of atrophy or 

growth, the weights of the LR_L1 classifier were analysed, as these weights 

correspond to the contributing voxels in classification. Figure 1 and Figure 2 

shows the identified voxels after LR_L1 classifier. A comparative analysis was 

conducted to evaluate the proposed approach against recent sMRI-based studies on 

ML detection of SCA12, establishing a performance benchmark. Table 2 

summarizes performance metrics from related studies and the best results achieved 

by the proposed method, with data sourced from primary references.

Discussion

The application of TBM enabled the detection of significant changes in JB 

volumes among SCA12 patients with 91.18% accuracy, which is better than the 

existing work except [2]. Further, it is observed that the atrophy in SCA12 is not 

only restricted to the cerebellum regions, but has affected the other brain regions 

also.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing 

neurodegenerative disorder that results from selective degeneration of upper and 

lower motor neurons in the brain stem and spinal cord [1]. It is characterized by 

alterations in cellular processes that include impaired proteostasis, accumulation 

of misfolded proteins, enhanced oxidative stress, and excitotoxicity. Currently, no 

definitive diagnostics or biomarker for ALS exists. Riluzole, the only FDA-

approved treatment for ALS, extends the survival only by a few months. 13C 

NMR spectroscopic measurements in rats and the human brain have established 

that the neurotransmitter cycling flux is stoichiometrically coupled with neuronal 

glucose oxidation, suggesting that neurotransmitter energy is supported by 

oxidative glucose metabolism [2]. The objective of the current study is to 

evaluate quantitatively the behavior and energetics of neurotransmitters in a 

transgenic mouse model of ALS. 

Methods

All the experimental procedures with mice were approved by the Animal 

Institutional Ethics Committee of CSIR-CCMB. SOD1G93A mice (4.5 months) 

were used in the study. The motor function in ALS mice was measured using a 

paw grip strength meter [3]. Briefly, the muscle strength of the forelimbs of mice 

was assessed by lowering the animals over the top of the grid, and pulling it back 

horizontally across the length of the grid. The maximum force exerted by the paw 

on the grid before release was recorded in the meter. Additionally, the motor 

coordination of mice was evaluated by the rotarod test [4]. The latency of mice to 

fall from the accelerating rotarod (4–40 rpm) for 300 s was monitored to measure 

motor coordination. Moreover, neurological scoring was performed to assess the 

severity of ALS by giving a score of 0–4. For neurometabolic measurements, 

mice were anesthetized using urethane (1.5 g/kg, intraperitoneal), and the lateral 

tail vein was cannulated. In order to determine the rate of neuronal glucose 

oxidation, [1,6-13C2]glucose was administered via the tail vein as a bolus-

variable rate infusion over 10 min [5]. The brain metabolism was arrested by 

freezing the mice in liq. N2. The neurometabolites were extracted from the frozen 

brain tissue [6]. The lyophilized brain extracts were dissolved in D2O for the 1H-

[13C]-NMR analysis at a 600 MHz spectrometer [5]. The concentrations and 13C 

labeling of brain metabolites of the spinal cord and cerebral cortex were 

measured in 1H-[13C]-NMR spectrum of tissue extracts. The cerebral metabolic 

rates were calculated from the 13C labeling of cerebral metabolites from [1,6-

13C2]glucose [7].

Results

There was a significant (p<0.0001) reduction in the forelimb grip strength of 

SOD1G93A male mice (0.42±0.10 N, n=10) when compared with WT control 

mice (1.13±0.19 N, n=10) [Fig. 1A]. Additionally, the motor coordination 

assessed by rotarod indicates that the area under the curve for SOD1G93A male 

mice (9.6±8.3 revolution, n= 8) is significantly lower (p=0.0003) than controls 

(56.7±18.3 revolution) [Fig. 1B]. Moreover, SOD1G93A male mice exhibited an 

increase in the neurological score (2.9±0.7, n=10) when compared with WT 

controls (0.0±0.0, n=10). Similar motor deficits were seen in female SOD1G93A 

mice. The typical 1H-[13C]-NMR spectra showing concentration (top) and 13C 

labeling of spinal cord extract is presented in Figure 2. There was a reduction in 

the levels of glutamate (SOD1G93A 7.2 µmol/g; Control: 8.0µmol/g, p=0.02), 

GABA (1.1 vs 1.3 µmol/g, p=0.001), aspartate (1.1 vs 1.3 µmol/g, p=0.000), 

NAA (4.9 vs 6.3µmol/g, p=0.001), NAAG (1.0 vs 1.7µmol/g, p=0.000), alanine 

(0.25 vs 0.33 µmol/g, p=0.005), while taurine (3.1 vs 2.5 µmol/g, p=0.014) and 

inositol (14.8 vs 9.3 µmol/g, p=0.001) levels were increased in the spinal cord of 

SOD1G93A mice [Fig. 2]. There was no significant perturbation in 

neurometabolite levels in the cerebral cortex of SOD1G93A mice. The 

neurometabolic analysis in the different brain regions of SOD1G93A mice is in 

progress..

Discussion

Behavioral analysis indicated severe impairment in limb strength, motor 

coordination, and neurological score in female as well as in male mice, 

suggesting severe ALS phenotype in both genders of SOD1G93A mice. The 

neurometabolite homeostasis is severely perturbed in the spinal cord, with no 

significant changes in the cerebral cortex.

Conclusion

The severe impairment in neurometabolite homeostasis in neuronal and astrocytic 

markers suggests impaired neural activity in the spinal cord. Early diagnosis of 

ALS by assessing the spinal cord-specific metabolites, including NAAG, will aid 

in the diagnosis of the disease and follow therapeutic progress during the course 

of intervention.
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Introduction

The corpus callosum (CC), the largest WM tract, plays a crucial role in 

interhemispheric communication and is often affected after traumatic insult, 

making it a focal point for understanding pathophysiological changes and WM 

damage can lead to cognitive deficits in TBI patients1.However, research 

suggests that damage isolated to CC may not fully account for cognitive 

impairments observed post-TBI. Instead, damage across a broader network of the 

WM tracts appears to be more predictive of cognitive outcomes, as cognitive 

functions rely on the coordinated integrity of multiple interconnected regions 2,3. 

The study aims 1) to examine differences in neurocognitive test performance 

between healthy controls and individuals with mild-TBI. 2) to investigate the 

mediating role of WM integrity in relationship between interhemispheric 

involvement of the CC and cognitive scores from the individuals with TBI 

compared to healthy controls.

Methods

TBI patients(n=13) and age/gender matched healthy controls (n=17) with DTI 

data and neurocognitive test scores were included in the study. MRI data was 

acquired on 3.0T clinical MRI scanner using 64 channel transmit-received head 

coil. DTI data was acquired with 64 diffusion directions. A multishell diffusion 

scheme was used, and the b-values were 0, 500 ,1000 and 2500 s/mm². The in-

plane resolution was 2.500 mm. The slice thickness was 2.50 mm.

Neurocognitive assessment: Visuospatial and verbal working memory were 

assessed using the Wechsler Memory Scale-Third Edition (WMS-III)4 through 

the Spatial Span Forward and Backward tasks, where participants were required 

to remember and reproduce the order of blocks pointed at by the examiner, and 

the Digit Span Forward and Backward tasks, where participants recalled 

sequences of numbers in both original and reversed orders.

DTI data analysis: DTI preprocessing was conducted using FSL 6.0.7.9 (FMRIB 

Software Library). The eddy tool was used to correct for motion and eddy current 

distortions in the diffusion images. Eddy-corrected images were processed using 

a tensor fitting model to compute DTI maps i.e. FA, MD, AD and RD. TBSS was 

conducted on FA using 5000 randomizations to perform a general linear model 

(GLM) analysis. Statistical computations were performed on the output images, 

with a significance threshold set at p ≤ 0.05. Region of interest (ROI) extraction 

was performed using the fslmeants command on the TBSS-derived FA image 

using the ROI masks generated using JHU ICBM-DTI-81 WM Atlas labels.

Statistical analysis:

Independent sample t test was conducted to examine the differences in 

neurocognitive scores. The mediation role of neighbouring WM were examined, 

with the interhemispheric involvement of the CC as the predictor variable. The 

PROCESS macro (Model-7) using SPSS v30 was employed to assess the 

mediation effects, controlling for covariates such as sex and age.

Results

Independent sample t test identified significant group differences (p<.001) in 

cognitive scores(DST and SST) between two groups (Fig 1). Callosal FA 

significantly predicted neighbouring WM FA (β = 0.9589, p = 0.0057), and 

mediator positively affected cognitive scores (β = 194.1473, p = 0.0216). 

Neighbouring WM FA significantly mediated the relationship between callosal 

FA and cognitive scores in both groups, with an effect of 146.9608 (95% CI: 

31.8687 to 289.6033) in Group-1 (TBI patients) and 107.7625 (95% CI: 36.3414 

to 233.6978) in Group-2 (heathy controls). However, callosal FA had a 

significant negative direct effect on cognitive scores (β = -116.8463, p = 0.0178) 

in TBI patients (Table-2). 

Conclusion

This analysis underscores the complex interplay between interhemispheric 

involvement for information processing and cognitive performance, particularly 

in TBI patients. These findings are indicating that increased FA during acute and 

subacute periods of TBI maybe due to a compensatory mechanism and 

compaction of axonal neurofilament resulting from traumatic insult5,6 . Prior 

research has also highlighted that the WM microstructure, as reflected by FA 

values, plays a key role in supporting cognitive processes by facilitating efficient 

neural communication7,8. However, in clinical populations, such as TBI patients, 

structural changes in WM may involve compensatory or maladaptive responses, 

complicating the expected benefits of higher FA9,10. This preliminary study 

highlights the importance of considering WM metrics in understanding cognitive 

outcomes in clinical populations and suggests potential avenues for interventions 

targeting WM health to improve cognitive function in various neuropathological 

conditions.
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Introduction

Major depressive disorder is a debilitating mental health condition, 

characterized by persistent low mood, anhedonia, sleep disturbances, and 

suicidal ideation. Traditional antidepressants often suffer from low 

efficacy, delayed onset of results, and ineffectiveness in approximately 

40% of depressed subjects. Ketamine and electroconvulsive therapy 

(ECT) are FDA-approved interventions for drug-resistant depression, 

offering rapid and highly effective therapeutic outcomes as compared to 

conventional antidepressants [1]. ECT involves the induction of a 

controlled seizure lasting a few seconds, followed by a post-ictal 

suppression phase characterized by reduced overall brain activity [2]. 

Ketamine, a non-competitive antagonist of N-methyl-D-aspartate 

(NMDA) receptors, induces anesthesia at higher doses [3], but exhibits 

rapid antidepressant effects at sub-anesthetic doses. However, the 

understanding of the impact of ECT and ketamine on the metabolic 

activity of excitatory, and inhibitory neurons and astrocytes is limited. 

Hence, the major aim of the study was to assess the impact of acute ECT 

and ketamine on neural circuitry.

Methods

Two-month-old C57BL6 male mice in the ECT group received a single 

electroconvulsive shock under isoflurane anesthesia via corneal 

electrodes, while the sham group mice were anesthetized but had no 

electric shock [4]. The Ketamine group of mice was injected with (R,S)-

ketamine (25 mg/kg, ip), while controls were injected with a normal 

saline solution. The impact of ECT and Ketamine administration on the 

metabolic activity of neurons and astrocytes was evaluated at different 

time points by conducting ex-vivo 1H-[13C]-NMR spectroscopy in 

conjunction with intravenous [1,6-13C2]glucose or [2-13C]acetate 

infusion, respectively (Fig. 1) [5]. The transcriptomics and quantitative 

phosphoproteomics were conducted to assess the effects of these 

interventions at the molecular level in the mouse brain. 

Results

Sub-anesthetic ketamine administration led to a transient enhancement in 

cerebral glucose oxidation within 15 min of injection, and normalized 

within 25 min. A comparable surge in neurometabolic activity was 

observed during ECT-induced seizure (+64.3±15.3 %, p=0.005), while 

the astroglial activity remained unchanged. However, a drastic reduction 

in the oxidative metabolism in neurons (-43.3±3.0 %, p=0.0004) and 

astrocytes (-37.0±0.8 %, p=0.0003) occurred immediately after seizure 

termination, with a pronounced increase in non-oxidative glucose 

consumption (+112.8±9.8 %, p=0.0001). Interestingly, the neuronal and 

astroglial activity normalized within one hour after ECT. 

Phosphoproteomic analysis showed a very distinct set of differentially 

expressed phosphoproteins involved during ECT-induced seizure and 

after one hour of electroconvulsive shock. The transcriptomic analysis 

indicated a marginal overlap in the biological processes involved in the 

molecular mechanisms of acute ECT and ketamine interventions.

Discussion

ECT and ketamine treatments are known to enhance synaptic plasticity, 

neurogenesis, and synaptogenesis and reduce neuroinflammation [6, 7]. 

Ketamine-induced surge in the neurometabolic activity is in line with a 

previous study in rats highlighting a transient surge in glutamate release 

within PFC, which is responsible for the rapid antidepressant effects [8]. 

ECT was also found to enhance the metabolic activity of glutamatergic 

and GABA’ergic neurons during the seizure phase similar to ketamine’s 

induced glutamate surge. However, the neurometabolic effects of ECT 

differ from ketamine in the post-ictal period, where neuronal and 

astroglial metabolic activity gets drastically reduced. Moreover, ECT 

seems to shift the brain ATP generation machinery to anaerobic glucose 

metabolism during the seizure and post-ictal suppression phase, 

reflecting an adaptive response of the brain to meet high energy demands 

or oxidative stress, potentially contributing to ECT’s therapeutic effects. 

Interestingly, the effects of ketamine and ECT were normalized to their 

respective control, within 25 and 60 minutes of administration, 

respectively. The transcriptomic analysis further shows the distinction in 

the neuromodulatory effects of ECT and ketamine interventions in mouse 

brains.

Conclusion

The assessment of metabolic activity of glutamatergic, GABAergic 

neurons, and astrocytes during acute ketamine administration, ECS-

induced seizures, and post-ictal suppression phase provides valuable 

information about the potential mechanisms of ECT and ketamine and 

could inform the development of optimized treatment strategies for 

depression and minimize the immediate side effects associated with these 

interventions. ional analysis.
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Introduction

The polyarticular nature of osteoarthritis (OA) tends to manifest in more than one joint[1]. 

This is especially important in the hip and the knee, as these joints are connected by 

movement, bodily load bearing, and balancing. Almost 45% of lone hip OA patients have 

been shown to develop subsequent knee OA [2]. Therefore, from a therapeutic intervention 
perspective, it is crucial to identify the early effects of hip OA, specifically hip cartilage 

degradation, on the normal-appearing knee cartilage. Increased T1p values depict early 

microscopic degradations of cartilage suffering proteoglycan loss [3][4]. Recently, evidence 

of cross-sectional associations between hip femoral cartilage T1p and contralateral knee 

patellofemoral cartilage T1p was demonstrated in a cohort of none-to-moderate hip OA[5]. 
We hypothesize longitudinal changes in contralateral knee patellar cartilage proteoglycan 

composition might be associated with baseline hip femoral cartilage compositional behavior. 

Methods
Sixteen subjects with none-to-moderate radiographic hip OA (age:53.25±11.46 years, eight 

females, BMI: 23.93 ± 3.84 kg/m2) provided written consents for the IRB-approved 

ongoing prospective multi-joint study and underwent two MRI scanning sessions at a gap of 

one year. Both the MRI scans (bilateral hip and knee imaging: 32 hips and 32 knees) were 

performed (Table-1) in a 3.0T GE-Signa Premier scanner (GE Healthcare, Waukesha, WI). 
Exclusion in this study was defined as either of the hips having advanced stages of OA 

(Kellgren-Lawrence-score = 4) at the baseline visit. The algorithms (Figure-1) for mapping 

multi-echo images into T1p relaxation times, for the bilateral hip[6] and bilateral knee[7] 

have been previously validated. The fitted hip T1p maps underwent an atlas-based 

algorithmic approach[6][8]. The analysis yielded T1p of six hip femoral subregional (R2-
R7) cartilages[8][6]. The subregions can be classified as R2 as posterior, R3 as posterior-

superior, R4 as superior, R5 as anterior-superior, R6 as anterior, and R7 as anterior-inferior 

cartilage regions[9]. R1 and R8 are regions with no viable hip cartilage to assess. In the case 

of the knees, a deep learning (DL)-based approach was employed for automatically 

segmenting knee cartilages into patellar subregions, and extracting T1p values [5]. All 
image analyses were performed using an in-house program developed in MATLAB version 

R2021a (MathWorks, Natick, MA). Comparisons between baseline and follow-up knee 

patellar T1p values of each study participant were performed with repeated measures 

analysis-of-variance (ANOVA). Relative change in patellar T1p values (ΔT1p-Patellar) 

across visits was determined by [(follow-up - baseline) / baseline]. Correlation between 
relative change in knee patellar cartilage subregion (ΔT1p-Patellar) and baseline T1p values 

of intra-limb hip femoral subregional (R2-R7) cartilages were performed with a linear mixed 

effects model, which controls for age, gender, BMI, and properly corrects for multiple 

measurements from the same subject. 95% Confidence Intervals and p-values were 

computed using a Wald test. All statistical analyses have been performed using RStudio (R 
Core Team, 2022, version 12.0+353). The effect is considered significant if p ≤ 0.05. 

Discussion

We observed a significant longitudinal increase in mean cartilage patellar T1p values from 

baseline scan to one-year follow-up (Figure-2). After adjusting for age, gender, BMI, and 

within-subject clustering, ΔT1p-Patellar was significantly negatively associated with 

baseline T1p values of intra-limb posterior-superior hip femoral cartilage R3 (Table-2). The 
strengths of associations were noted in terms of beta estimates, 95% CIs, and p-values. In a 

previous study reporting baseline hip-knee T1p characteristics of this cohort, R3 (load-

bearing posterior-superior subregions of hip femoral cartilage) was positively associated [5] 

with baseline knee patellar T1p. Balancing the bodily mechanical load in sync with 

compositional variations in load-bearing hip cartilage can lead to varied loading of the 
contralateral knee joint during movement. It might lead to altered gait patterns (15) and 

provide compensatory relief to the intra-limb patellar cartilage. This potential mechanism 

explains the negative associations between T1p values of hip femoral R3 vs. longitudinal 

changes (ΔT1p) in knee patellar subregions. The causality of the relationship cannot be 

directly inferred from the given data. Future mediation analyses with existing loading data 
in the cohort are solicited (including a higher number of subjects) to probe the extent to 

which these associations are systemically linked vs. mechanically propagated.

Conclusion
In this study, we present one of the first exploratory results of the compositional correlations 

between longitudinal knee patellar cartilage vs. baseline intra-limb hip femoral cartilage. 

Relative changes in knee patellar T1p values were negatively associated with baseline T1p 

values of intra-limb hip femoral load-bearing posterior-superior cartilage subregion. These 

findings will eventually lead to a better understanding of the mechanical propagation of OA 
between these two joints and might be useful for the prevention of polyarticular OA 

development. 
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Introduction

Early detection of Alzheimer’s Disease (AD) is crucial for effective intervention but remains 

challenging despite advancements in biomarker identification. Structural neuroimaging via 

magnetic resonance imaging (MRI) provides anatomical insights, while magnetic resonance 

spectroscopy (MRS) allows noninvasive biochemical information, detecting early metabolic 
alterations even when structural MRI appears normal. Additionally, cerebrospinal fluid 

(CSF) biomarkers and electrophysiological measures from electroencephalography (EEG) 

contribute valuable physiological information. However, integrating these heterogeneous 

data sources for precise and timely intervention requires advanced computational 

techniques.

Methods

This study leverages deep learning to integrate multimodal data for improved AD detection 

and intervention strategies. As illustrated in the blue-highlighted figure, which focuses on 
identifying key structural alterations in disease progression, we analyzed T1-weighted MRI 

scans from 200 subjects within the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 

categorized as cognitively normal (n=50), mild cognitive impairment (MCI, n=50), 

progressive MCI (PMCI, n=50), and AD (n=50). FreeSurfer software was used for image 

processing, extracting cortical thickness and volumetric features, which were statistically 
analyzed via a General Linear Model with Cluster Correction.

Results

Findings revealed significant structural alterations in cortical thickness and volume, 
progressing from surface to deep brain regions, predominantly in the right hemisphere. 

Initial changes were observed in the middle and inferior temporal and superior frontal 

regions, with later-stage involvement of the isthmus cingulate and entorhinal cortex. Volume 

reductions extended from inferior temporal regions to the posterior cingulate, medial 

orbitofrontal, precuneus, precentral, and entorhinal regions. These results highlight the 
potential of structural MRI as a reliable biomarker for AD progression and mapping 

neurodegeneration. Additionally, it plays a crucial role in accurately computing the AD risk 

score and classification.

Conclusion
Future research, as illustrated in the red-highlighted figure, will integrate MRS-derived 

metabolite information from structural MRI-informed regions, whole-brain EEG data, and 

CSF biomarkers to develop a robust deep learning framework. A hybrid Convolutional 

Neural Network-Long Short-Term Memory (CNN-LSTM) model will be explored for 

multimodal fusion, incorporating clinical history for enhanced prediction accuracy. This 
approach aims to refine early diagnostic strategies and improve personalized interventions 

for AD patients.
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Introduction

Renal Cell Carcinoma (RCC) is the most common form of kidney cancer, 

comprising distinct subtypes such as Clear Cell RCC (ccRCC), Papillary RCC 

(pRCC), and Chromophobe RCC (chRCC), each exhibiting unique biological 

behavior and prognosis. These subtypes differ in biological behavior and 
prognosis [1]. Accurate classification of RCC subtypes is crucial for personalized 

treatment and improved patient outcomes.

Methods

MRI data of RCC subtypes total of 66 patients obtained from The Cancer 

Imaging Archive TCIA were analyzed, focusing on tumor segmentation from the 

center slices of T2-weighted images using 3D Slicer. Radiomic features, 

including First Order Statistics, Shape-Based features, GLCM, GLRLM, 

GLSZM, and NGTDM, were extracted using Pyradiomics and saved in CSV 

format. The data was split into 80:20 training and testing subsets. 120 features 

were extracted features per patient extracted PCA was applied to reduce over 100 

features to the top 10 for subtype classification. Four machine learning models 

(Logistic Regression, SVM, Random Forest, and Gradient Boosting) were 

evaluated using Accuracy, F1-Score, ROC-AUC, and confusion matrices.

Results

Among the 120 radiomics features extracted using Pyradiomics, PCA reduced 
100+ radiomic features to 10 key predictors, including 

original_firstorder_Maximum,original_glcm_JointEnergy,and 

original_glszm_LargeAreaEmphasis. Among the machine learning models 

evaluated, Random Forest achieved the highest performance with 88.24% 

accuracy and an ROC-AUC of 0.88 (Table 1, Figure 3), outperforming Gradient 
Boosting, Logistic Regression, and Support Vector Machine (SVM) in 

distinguishing ccRCC from non-ccRCC. Key bio were 

original_firstorder_Mean,original_glcm_SumAverage,and 

original_ngtdm_Coarseness.

Discussion

We previously demonstrated the use of MRI based radiomic features to predict 

high-grade histology (aggressive tumors) and tumor necrosis in ccRCC [2]. This 

study demonstrates the feasibility of classifying RCC subtypes using T2-

weighted MRI radiomic features. Pyradiomics and machine learning identified 
key imaging biomarkers, while PCA reduced complexity and highlighted 

predictive features. Although the results align with existing literature on GLCM 

and GLSZM, limited data for rarer subtypes remains a challenge. Future work 

will focus on expanding datasets and refining algorithms.

Conclusion

Our study demonstrated the feasibility of using MRI-based radiomics and 

machine learning for non-invasive RCC subtype classification Identified 

biomarkers hold promise for advancing diagnostic precision. Further research 

will enhance model accuracy and broaden clinical applicability.
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Fig. 1 MRI Slice with Segmentation Mask: A center slice from a T2-weighted MRI of a 

renal tumor. The raw MRI image (left) and its segmentation mask (right) highlight the 

tumor region, used to extract radiomics features for RCC subtype classification

Fig. 2 Confusion Matrices of Classifiers: Confusion 

matrices for Logistic Regression, SVM, Random 

Forest, and Gradient Boosting classifiers. Diagonal 

values indicate correct classifications, while off-

diagonal values represent misclassifications, 
highlighting the performance of each model.

Fig. 3 ROC-AUC curves comparing classifier’s 

performance: Random Forest (AUC = 0.88) and 

Gradient Boosting (AUC = 0.85) show the highest AUC 

values, indicating superior performance over Logistic 

Regression (AUC = 0.82) and SVM (AUC = 0.52).

Fig. 4 The PCA (Principal Component Analysis) plot visualizes the distribution of extracted radiomic

features after dimensionality reduction to two principal components. It segregates data points

based on tumor subtypes (e.g., RCC vs. Non-RCC). The clustering of points indicates patterns in

the feature space that machine learning models exploit for classification. The variance explained

by the components supports the effectiveness of feature selection in distinguishing between the
two subtypes.



Introduction

MRI guided interventional procedures are becoming increasingly common across many 

cardiology, neurology and oncology applications. In all of these applications, the external 

treatment device interacts with the MR system during the treatment. Although many 

treatment devices have been integrated with the MRI system through dedicated interfaces 
over the past decades, their spread has been limited due to cumbersome setup procedures 

and a lack of standardization. We report here an extensible platform for external medical 

devices to connect to the MR scanner. Using this interface between a Philips MR and 

Insightec High Intensity Focused Ultrasound (HIFU) system, an MR guided Focused 

Ultrasound (MRgFUS) treatment is performed. 

Methods

The Philips MR system interacts with the external HIFU system through a dedicated MR 

Therapy Control (MRTC) interface for end-to-end treatment workflow (Fig.1a). MRTC uses 

Google Protobufs to serialize messages that are exchanged via IPC TCP/IP. There are 

messages to exchange system configuration, read ExamCards, create or select an exam, 

select a scan protocol, start, pause, resume and stop a scan, receive images and change the 

orientation during scanning. Inherent safety checks are built into the interface via a token 

system to prevent unauthorized use. 1D MR tracking techniques are developed for the 

localization of e.g. a HIFU transducer or intravascular active catheter. Multi-Echo gradient-

echo MR sequences are optimized for temperature monitoring. A dedicated Insightec head-

coil with an integrated tracking coil and MR imaging coils is used to perform the MRgFUS 

treatment (Fig. 1b). 

Results

During the MRgFUS treatment, images are transferred in real-time via the MRTC interface. 

Based on the multi-echo phase images, temperature is continually monitored during the 
treatment. Volunteer and patient scans with the entire system setup has been demonstrated 

(Fig. 1c). End-to-end workflow including planning, tracking and precise targeting of thermal 

energy has been performed. Following the volunteer trials, the system has been deployed in 

a multi-center clinical trial involving patients.

Discussion

The MRTC interface permits multiple interactions between the MR and external systems 

allowing for an end-to-end clinical workflow that can be controlled from the external 

interface. The interface is easily extensible, allowing multiple other eternal systems like 
MR-electrophysiology interventions to utilize the same platform. For MRgFUS, using the 

MRTC platform, interaction between the MR system and external HIFU system was 

established. The system has recently obtained FDA approval and commercial deployment is 

in progress [1].

Conclusion

The MRTC interface has been successfully implemented in a wide range of therapeutic 

applications and is ready to support new treatments. Further standardization of MR 

interfaces over vendors is desirable. 
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Introduction

Dementia is a neurodegenerative disorder characterized by 

progressive cognitive decline, which manifests in various 

stages, including Early Mild Cognitive Impairment (EMCI), 

Mild Cognitive Impairment (MCI), Late Mild Cognitive 

Impairment (LMCI), and Alzheimer’s Disease (AD). This 

study aims to analyze the substages of dementia by 

examining structural variations in the brain, with a focus on 

the decline in the amygdala [1] and hypothalamus [2]. 

Structural MR images were sourced from the ADNI 

database. The dataset used in this study comprises of 185 

AD, 202 EMCI, 200 MCI, 180 LMCI, and 205 Control 

Normal (CN) subjects. To preprocess and segment the 

amygdala (Fig.1a) and hypothalamus (Fig.1b), FreeSurfer 

[3] software was employed. The segmentation process 

involved multiple preprocessing steps, including motion 

correction, intensity normalization, and non-uniform 

intensity correction, ensuring that the MRI scans were free 

from artifacts and signal inconsistencies. Skull stripping was 

performed to remove non- brain tissues, followed by an 

automated parcellation process to identify and label 

subcortical structures. FreeSurfer utilizes an atlas-based 

approach with probabilistic models refined by manual 

annotations, ensuring accurate segmentation of the amygdala 

and hypothalamus. The quality of segmentation was 

carefully inspected, and manual corrections were applied to 

improve precision. Geometric features [4] such as volume, 

surface area, extent, equivalent diameter, and solidity were 

extracted to quantify structural variations in the amygdala 

and hypothalamus across different dementia stages. A one-

way ANOVA revealed significant differences in structural 

attributes of the amygdala and hypothalamus across 

dementia stages. In the amygdala, equivalent diameter and 

volume were the most significant features, while in the 

hypothalamus, equivalent diameter emerged as the strongest 

marker, followed by volume and surface area. These findings 

highlight equivalent diameter and volume as key biomarkers 

for studying the progression of dementia-like disorders.
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Introduction

Meningiomas are the most common brain tumors in adults, which account for 

37% [1]of all intracranial brain tumors. According to the WHO 2021 

classification of the central nervous system of brain tumors, brain invasion is a 

stand-alone criterion for atypical (grade 2) meningiomas. [2] The standard 

diagnosis of brain invasion is a histopathological examination; the 

histopathological definition of brain invasion is infiltration of meningiomas tumor 

cells in the brain parenchyma without separating the connective tissue layer.[3] 

This method requires extensive brain tissue sampling at the tumor-brain interface 

during surgical resection.  In some studies, it has been shown that MRI-based 

imaging features correlate with brain invasion. These features are tumor location, 

tumor shape, peritumoral edema, cerebrospinal fluid (CSF) cleft, distribution of 

arachnoid layers, etc.  [4],[5]  Radiomic analysis is a reasonable image-

processing tool that helps quantify high-dimensional tumor features that cannot 

be seen from necked eyes, such as texture, small intensity change, and the edge 

between the tumor-brain interface, which is essential for predicting brain 

invasion. Also, it is a non-invasive method for quantifying tumor heterogeneity. 

In this study, we proposed a machine learning-based model for predicting brain 

invasion in meningiomas using MR images (T1CE and FLAIR) and radiomic 

features.

Methods

In this retrospective study, we collected preoperative T1CE and FLAIR MR 

sequences from the online repository of The Cancer Imaging Archive and a local 

hospital. 65 patients with histopathological conformed meningiomas, 32 with 

brain invasion, and 33 without brain invasion.  The proposed pipeline is shown in 

Figure. 1. The preprocessing involves 3D registration of T1CE and FLAIR using 

the Python library SimpleITK, followed by manual segmentation of tumor core 

from T1CE and peritumoral edema from FLAIR. The ground truth segmentation 

is performed on an open-source software 3D slicer, and the ground truth is further 

varied by experienced radiologists. From the segmented mask, we extracted 214 

radiomic features from the Python library pyradiomics. Next, feature selection is 

performed by finding the importance of features by random forest; we selected 41 

features for model training. Top 5 features are shown in Figure 2. These features 

are fed to machine learning classification models (XGBoost Classifier and 

Random Forest classifier) to predict meningioma brain invasion. The model's 

performance was evaluated using various metrics such as accuracy, F1 score, 

recall, and precision. 

Results

Overall, the XGBoost classifier achieves the highest accuracy, with 85% on 

multicentric test data. The performance parameters of the models are shown in 

Table 1. The computed accuracies for the XGBoost and random forest classifiers 

are 0.85 and 0.80; computed F1 scores are 0.85 and 0.80, respectively; computed 

recalls are 0.82 and 0.81, respectively; computed precisions are 0.86 and 0.81, 

respectively.

Discussion

In this study, we extracted radiomic features of the tumor core and peritumoral 

edema to predict brain invasion in meningiomas using a machine-learning 

classifier model. The preoperative prediction of brain invasion will help in 

surgical planning and adjuvant therapy. Hence, this approach is a non-invasive 

and rapid method for predicting brain invasion in meningiomas without 

histopathological examination. Also, the model performance is tested on 

multicentric data.  However, further studies should be carried out to validate the 

results on large datasets from different hospitals and evaluate the generalizability 

of the proposed approach.

Conclusion

Brain invasion can be predicted using radiomic features extracted from the tumor 

core and peritumoral edema, which is a simple and feasible approach to predict 

brain invasion without histopathological examination.
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Introduction
13C Labeled substrates, in combination with NMR spectroscopy, are used to study 

neurometabolism.The lower sensitivity of 13C NMR is resolved to some extent by 
1H-[13C]-NMR spectroscopy.2H-NMR, in combination with a 2H tracer, has been 

an efficient approach for metabolic measurement.1,2In this study, we have 

compared the measurements of 2H-labeled amino acids using2H (direct) and 1H 

(indirect)NMR spectroscopy.

Methods

All animal experiments were performed under protocols approved by the 

Institutional Animal Ethics Committee of CCMB. Four weeks old SD (n=16) rats 

were used in the study. Rats were anesthetized with urethane (1.5 g/kg, 

intraperitoneal), and infused with [6,6’-2H2]glucose for 10, 20, 40, and 90 min 

using a bolus variable infusion rate.3 Blood was withdrawn from the retro-orbital 

sinus, and brain metabolism was arrested by a focused beam microwave 

irradiation (3kW, 1.8s). Metabolites were extracted from the rat cerebral cortex 

using ethanol-extraction protocol.4 The lyophilized extracts were dissolved in a 

phosphate buffer (50 mM) prepared in  D2O (1%), H2O (99%) containing TSP 

(0.25 mM). The 2H NMR spectroscopy of cortical extract was obtained with a 

zg2h pulse program using a triple resonance probe with the following parameters: 

repetition time, 0.6 s; spectral width, 1197 Hz; and number of averages: 16384 in 

the block of 16 with 1024 scans for each block. 1H-[13C]-NMR spectroscopy was 

performed to measure the concentrations of 2H labeled neurometabolites using an 

indirect a

Results

The 2H NMR spectra of the cerebral cortex prepared after [6, 6’-2H2]glucose 

infusion for different time points are shown in Figure 1. The 2H resonances of 

lactate, glutamate, and glucose are seen at 10 min. Additionally, labeling of 

aspartate and glutamine is seen at later time points (≥20 min).The concentrations 

of 2H-labeled metabolites obtained from the 2H spectra areshown in Figure 2A. 

The 1H resonances of GluC3 were used to estimate the total concentration of 

glutamate. The level of [4-2H]Glu was indirectly estimated by subtracting the1H-

GluC4measured glutamate concentration from the total. The loss/dilution of 2H 

label in [4-2H]Glu level was corrected by multiplying it with a factor of 1.33. The 

[4-2H]Glu concentrations measured using 1H and 2H NMR at various time points 

of infusion were in good agreement (Fig. 2B).

Discussions

The loss/dilution of label (13C and 2H) occurs at different stages of metabolism 

like glycolysis or tricarboxylic acid cycle (TCA) cycle. In case of 13C-

glucose,label islost as CO2 in TCA cycle only. However, there is differential 

dilution/loss of 2H from the glycolytic and TCA cycle intermediates in case of [6, 

6’-2H2]glucose. The detailed analyses in the fractionated extract prepared after 90 

min [6,6’-2H2]glucose infusion showed no signal of[2-2H]Asp (~3.90 ppm), [2-
2H]Glu (~3.76 ppm), and [3-2H]Glu(~2.09 ppm) suggesting complete loss/dilution 

of 2H from the TCA cycle intermediates beyond oxaloacetate. As a result, 1H-

GluC3 resonance was used for the estimation of the total glutamate pool, and the 

concentration measured using 1H-GluC4resonance was subtracted from the total 

for the indirect estimation of [4-2H]Glu.

Conclusion

The close resemblance of 2H levelestimated using 2H and 1H NMR spectroscopy 

indicates that 2H labeling can be efficiently measured using 1H-

NMR spectroscopy for neurometabolic measurement.This approach promises the 

least experimental time and higher sensitivity without any additional requirement 

of hardware and can provide valuable insights into the neurometabolic status of 

various neurological diseases.
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Introduction

The artificial electromagnetic heart (AEH) is an emerging 
innovation in cardiac therapy. But the major problem is to design 

an AEH that could accurately mimic the natural heart's 

electromagnetic properties. This paper aims to integrate the MRI 
data with the techniques of machine learning (ML) to design an 

AEH which is highly efficient and physiologically accurate. The 
main intention was to improve current AEH designs by optimizing 

simulations of electromagnetic fields and heart dynamics utilizing 

more advanced computational methods.

Methods

The study used high-resolution MRI data from the human subject 

to model the electromagnetic properties of the heart. A novel 

machine learning framework was developed to process and 
analyze the MRI data, enabling the generation of precise 

electromagnetic field maps. The ML model incorporated 
convolutional neural networks (CNNs) for image segmentation and 

recurrent neural networks (RNNs) for temporal dynamics 

prediction. The designed AEH prototype was evaluated using 
computational fluid dynamics (CFD) simulations and bench testing 

under physiological conditions. The performance indices 
determined here were electromagnetic field intensity, energy 

efficiency, and hemodynamic compatibility.

Results

The ML-based method was evaluated to achieve 95% accuracy in 
segmenting MRI data and electromagnetic field distribution 

predictions. Energy efficiency was improved by 30% when 

compared with available models for the AEH prototype. According 
to CFD, hemodynamic performance was optimal without 

significant turbulence and minimal pressure drops. The bench tests 

validated that electromagnetic fields can indeed be kept constant 

by AEH under a number of physiological states. Some 
representative figures and plots are given: electromagnetic field 

map, comparison energy efficiency, and hemodynamic 

performance. 

            Discussion

The fusion of MRI with ML is one big step ahead of AEH. The 

current investigation clearly demonstrated how ML may offer a 
good source of enhancement towards precision and the efficiency 

of an AEH. The proposed design has better precision in modeling 
an electromagnetic field in comparison to any conventional method 

applied, and predictive accuracy of dynamics in the heart. The 

study is in recent literature on applying ML in biomedical 
engineering but progresses the state of the art forward by 

addressing specifically the challenges toward AEH design. The 
approach is novel and integrates MRI data, ML algorithms, and 

simulation of the electromagnetic field to yield a physiologically 

accurate model of AEH.

Conclusion

This work illustrates the feasibility of applying machine learning 
for designing an artificial electromagnetic heart with superior 

performance and physiological accuracy. The proposed approach is 
highly relevant in a clinical setting and provides a promising 

alternative for end-stage heart failure patients. The bottom line is 

that next-generation artificial organs may be revolutionized by 
combining advanced computational methods like ML with medical 

imaging data. Future work will include in vivo testing and long-
term performance evaluation of the AEH prototype.
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Introduction

Trace-weighted or isotropic diffusion-weighted imaging (DWI) is one of the most widely 

used contrast mechanisms in clinical magnetic resonance imaging (MRI). By providing 

insights into tissue microstructure abnormalities associated with conditions such as cancer, 

stroke, and traumatic injury, it has become an indispensable tool in diagnostic imaging. 
Traditionally, generating an isotropic DWI image requires at least three separate acquisitions 

with diffusion weighting applied along the x, y, and z axes, followed by their combination. 

This approach is time-consuming and can significantly prolong scan times, particularly in 

motion-sensitive applications such as fetal MRI, making the data acquisition prone to motion 

artifacts. An alternative approach to obtaining an isotropically weighted DWI image involves 
ensuring that the cross-terms of the diffusion tensor vanish while the diagonal elements 

remain equal [1,2]. This concept was first demonstrated by Mori et al. [1], who employed a 

bipolar gradient waveform, while Wang et al. [2] explored an alternative approach using 

oscillating gradient waveforms. Both methods have contributed to the development of 

isotropic diffusion encoding (IDE), a term that has gained increasing recognition in recent 
literature. However, the bipolar gradient waveform approach suffers from challenges such as 

long echo times (TE) and eddy current distortions, whereas continuous gradient waveforms 

have shown greater efficiency in addressing these limitations. Existing methods for designing 

gradient waveforms that satisfy isotropic diffusion weighting conditions primarily rely on 

numerical optimization [1,2]. In this work, we present an analytical approach to deriving 
gradient waveform shapes that achieve isotropic diffusion weighting using two distinct 

methods: one based on utilizing a continuous sinusoidal basis and the other a linear 

combination of Walsh basis functions with varying indices.

Methods

For designing Gx, Gy and GZ gradients for isotropic diffusion weighting, the following 

conditions must be satisfied: 

where diffusion is occurring over the time interval [0,T]. If the gradient waveform shapes for 

each axis are expanded in terms of a basis function decomposition, such as a Fourier series or 

a Walsh series, the problem reduces to determining the coefficients that satisfy the required 

isotropic diffusion weighting conditions. For the Fourier series representation, this takes the 

form:

Here, o=2π/T to ensure that Eq.1 is satisfied. A similar approach can be applied to Walsh 

basis expansion, where the gradient waveform is expressed as a linear combination of Walsh 

functions with appropriate coefficients.

In this method, the problem is simplified to finding 2N unknown coefficients for each 

gradient axis, where N and m, both positive integers, define the number and type of harmonic 
components in a gradient waveform. The equations are 2nd order polynomials in terms of 

Fourier series coefficients, solvable using Grobner basis decomposition. System hardware 

conditions like maximum gradient amplitude or maximum slew rate per axis can further 

refine the solution. After determining Fourier Coefficients for a harmonic configuration, 

gradient waveform shapes can be defined for the desired b-value (i.e., diffusion weighting 
measured in sec/mm2), with T as a free or fixed parameter to determine the maximum b-value 

achievable for that configuration. This applies to continuous sinusoidal waveforms. A similar 

approach can be applied to Walsh functions.

Results
Continuous sinusoidal waveform

Several families of solutions exist based on the number of harmonics used per gradient axis. 

A simple choice is assigning the mth, (m+1)th and (m+2)th harmonics along, say Gx,Gy,Gz 

directions, respectively. ‘m’ is a positive integer.

This combination can be permuted among the x, y, and z directions without loss of 

generality. Here, a is the gradient amplitude scaling factor, m is a positive integer, and θ is an 

independent parameter. Regardless of the value of m, this solution results in a b-value of 

Another solution is having the first harmonic terms in two gradient axes and the  first and the 

second harmonic terms in the third gradient axis. 

Without loss of generality, if we assume a1x = 1, and a1y=a, The remaining fourier coefficients 

are determined as:

Here, θ and f are independent free parameters, with f serving as a scaling factor to ensure the 

maximum gradient strength remains within realistic limits. Interestingly, the b-value for this 

family of solutions is dependent on the value of m as well as of a and f :

Walsh basis functions

Similarly, Walsh functions can be written,

with the resultant gradient waveforms also shown above. The b-value achievable in Walsh 

basis function
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